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Abstract

Much attention has been given to machine learning and its perceived impact in radiology, particularly in light of recent success with

image classification in international competitions. However, machine learning is likely to impact radiology outside of image interpre-

tation long before a fully functional “machine radiologist” is implemented in practice. Here, we describe an overview of machine

learning, its application to radiology and other domains, and many cases of use that do not involve image interpretation. We hope that

better understanding of these potential applications will help radiology practices prepare for the future and realize performance

improvement and efficiency gains.
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INTRODUCTION

Machine learning is a branch of artificial intelligence that
has been employed in a variety of applications to analyze
complex data sets and find patterns and relationships
among such data without being explicitly programmed [1].
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Arthur Samuel was among the first researchers to apply
machine learning, teaching a computer to improve
playing checkers based on training with a human
counterpart in 1959 [2]. Machine learning algorithms
analyze data features as inputs, and by the process of
iterative improvement can produce linear and nonlinear
predictive models that detect signals, classify patterns, or
Machine

sometimes categorized into two main types, supervised

prognosticate outcomes [3]. learning  is
and unsupervised [4,5]. In supervised learning, the data
set is already annotated with ground truth labels from
which the algorithm learns. In unsupervised learning, the
algorithm detects patterns in data when the outcome is
unknown.

There are many types of machine learning algorithms,
including artificial neural networks (ANNSs), support
vector machines, k-nearest neighbors, and random forest
[4,6,7]. More recently, there has been a resurgence of
interest in multlayered or deep ANNs, given their
ability to work well with complex and high-dimensional
data sets [8].

The relatively recent success of machine learning,
particularly ANNs, can be attributed to three primary
factors: (1) availability of Big Data—very large data sets
that exceed the capability of conventional data analysis;
(2) requisite parallel processing power that exists in
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modern-day graphics-processing units, which facilitates
training of modern machine learning algorithms; and (3)
advanced deeper algorithms and optimization techniques
for training [9-11].

Machine learning has been used across many in-
dustries, including banking and finance, manufacturing,
marketing, and telecommunications [11]. Some more
common every day examples include e-mail spam
filters, face recognition, search engines, speech
recognition, and language translation. Many large
capital corporations in the digital world including
Microsoft (Microsoft Corp, Redmond, Washington,
USA), Google (Menlo Park, California, USA), Apple
(Apple Inc, Cupertino, California, USA), Facebook
(Facebook, Inc, Menlo Park, California, USA), Baidu
(Baidu Inc, Beijing, China), and Amazon (Amazon Inc,
USA)

learning in their products [12-17].

Seattle, Washington, machine

incorporate

MACHINE LEARNING WITHIN RADIOLOGY

One recent success in machine learning has been the
ability to classify images [7]. Much of this success can be
attributed to the availability of large annotated data sets
for machine learning researchers. For example, Pascal

Visual Object Classes, CIFAR-10,

contain up to millions of annotated images. In particular,

and ImageNet

the ImageNet Large Scale Visual Recognition Competi-
tion challenge that began in 2008 has led to break-
throughs in artificial intelligence [18-21]. The use of deep
or multilayered ANNS, often now broadly referred to as
“deep learning,” led to an increase in performance of
the top-five accuracy (percent of cases where the answer
was within the top-five predictions) from approximately
75% in 2011 to 97% in 2016 [22,23]. Since 2012, all of
the winning entries in international challenges have used
some variant of deep ANNs, with current accuracy
comparable or exceeding human performance.

Machine learning and deep neural networks have had
similar success with other high-dimensional complex data
sets for performing speech recognition and language
translation [15,16]. Accordingly, machine learning has
the potential to solve many challenges that currentdy
exist in radiology beyond image interpretation. One of
the reasons there is great excitement in radiology today
is the access to digital Big Data [9]. Many institutions
have implemented electronic health care databases
over the past two decades, including for images in
PACS, radiology reports and ordering information in

Radiology Information Systems, and electronic health
records that encompass information from other sources,
including clinical notes, laboratory data, and pathology
records. Moreover, radiology images themselves are rich
in metadata stored in the DICOM format, which may
be leveraged as well. As such, there are great
opportunities to uncover complex associations within
the data using machine learning that would otherwise
be difficult for a human to do [24]. This has potential
implications for population health, earlier prediction of
disease, and improvement in quality, efficiency, and
cost-effectiveness of care [25-27].

There are a number of ways in which machine
learning can help radiology practices today, including
many tasks that are frequently performed by radiologists
and ordering clinicians, such as imaging appropriateness
assessment, creating study protocols, and standardization
of radiology reporting, that could benefit from automa-
tion [28-30]. Although many of these examples could be
implemented using conventional procedural
programming methodologies, the machine learning
approach holds the promise to perform these tasks with
a higher level of proficiency that can improve over time

as the system “learns” new data.

USE CASES IN RADIOLOGY (BEYOND IMAGE
INTERPRETATION)

Machine learning has potential to assist radiologists with
many of the tasks that they perform in addition to image
interpretation, particularly in scenarios in which current IT
solutions may not be optimal. The following are some use
cases where machine learning technologies can have an
impact in radiology. It should be noted that many of the
following cases would require clinical validation before use.

Creating Study Protocols

One of the roles of a radiologist is to appropriately create
study protocols based on their order indication and other
relevant clinical parameters [29]. This involves reviewing
clinical and ordering information stored in an electronic
health record, referencing relevant lab values, prior
images, and radiology reports. This can be a time-
consuming but important task. However, recent studies
demonstrate that machine learning algorithms utilizing
information extracted from the provided study indications
can be accurate in determining protocols of studies in both
brain and body MRIs [31,32]. Tools like these could be
useful and tme-saving in clinical practice (Fig. 1).
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Fig 1. Sample workflow of a machine learning assistant for creating a study protocol. A study is initially ordered that routes into a
scheduling system. A radiologist creates a protocol for the scheduled studies, with assistance from the machine learning
software, which can make suggestions or predict an imaging protocol based on various input parameters.

Moreover, they can assist the clinician at the time of order
entry by integration into decision-support systems.

Hanging Protocols

Many modern PACS leverage DICOM metadata to
appropriately display or “hang” radiology studies so that
they can be optimally interpreted by radiologists in a
timely fashion. This becomes even more important with
complex studies that have many parameters and series,
such as MRI, in which there may be dozens of pulse
sequences to be displayed in various anatomic planes.
Moreover, with different scanner brands and naming

conventions, an automated method to appropriately
display these studies can be a difficult task. In addition,
sometimes metadata are inaccurate due to manual entry,
leading to hanging protocol errors. However, if a machine
can accurately identify the modality, body part, image
plane, and other pieces of information (eg, pulse
sequence), such an algorithm may be used to more
accurately automatically derive hanging protocols. A
survey of radiologists indicated that creating hanging
protocols had the highest perceived impact on radiolo-
gist’s productivity, with some work already addressing
this challenge with machine learning [33,34]. An example
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showing how machine learning may be incorporated into
clinical workflow for this purpose is provided in Figure 2.

Improve Image Quality and Decrease Radiation
Dose in CT

There has been a desire to reduce radiation dose in CT,
although this results in a tradeoff with increased image
noise and therefore poorer-quality images, because there
are limitations of the commonly used filtered back pro-
jection reconstruction techniques. Some of the newer
iterative reconstruction technologies have helped reduce
noise in images generated with lower doses [35].
However, deep learning has the potential to reduce
radiation dose even further. The idea is to train a
classifier to map “noisy” images generated from ultra-
low-dose CT protocols to high-quality images from reg-
ular protocols, using deep learning techniques [36,37].
This is akin to creating “super-resolution” photo-
realistic images from down-sampled versions, which has
already shown exciting results in every-day color images
[38,39]. This technique teaches the network what normal
anatomy and abnormal pathology looks like at low doses
compared with that at regular doses, thereby being able to

Machine-learning
Hanging Protocoling Assistant

.

Optimal
Hanging Protocol

recreate the image from ultra-low-dose scans (Fig 3). This
type of algorithm demonstrated positive results in a
survey-based multicenter study that had over 60 radiol-
ogists assess the diagnostic quality of low-dose scans
reconstructed by an ANN versus the same scan at stan-
dard doses. They found over 90% of evaluators felt the
ANN-reconstructed low-dose images were of greater or
quality than the standard-dose

equal diagnostic

images [40].

Increase Image Quality and Decrease Scan Time
in MRI

MRIs require more time to acquire than other imaging
modalities to achieve a certain image quality. In some
scenarios, such as in stroke or cerebral hemorrhage
detection, there is a need for rapid acquisition protocols.
Researchers have already used deep learning to recon-
struct anatomic MRIs using sparse raw data from the
scanner, which can reduce acquisition time by half or
more [41,42]. Another group used deep learning to
improve image quality of thicker MR brain scans
similar to that of thin-section, high-quality research
scans. This is performed by interpolating sparse data from

Reporting
System

Td

Radiologist

/

EMR or RIS

Fig 2. Example workflow using machine learning for hanging protocols. A radiologist opens a study on the PACS, and a machine
learning assistant automatically creates an optimal hanging protocol for the radiologist to view. The radiologist then reports the
findings and finalizes the report to the electronic medical record (EMR) or radiology information system (RIS).
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Fig 3. Example of a trained convolutional autoencoder (encoder-decoder) artificial neural network (ANN) transforming a relatively
noisy input image from a low-dose CT to a corresponding image with less noise. The image on the left is taken from a low-dose
CT scan, and the image on the right is a simulation of what a transformed de-noised image could look like. In this example, the
input image is fed into the network, and then mapped into an encoded representation, which is subsequently used by the decoder
network to create an output image. Such ANNs need to be trained on low dose CTs as well as corresponding routine dose CTs,

and learn the mapping between the two.

larger axial slice intervals at 5 to 7 mm apart using deep
learning to map such images into higher-resolution,
anatomically plausible volumetric outputs [43]. The
higher-resolution restored scans could improve the per-
formance of basic image-processing tasks, such as skull-
stripping and registration, which sometimes is difficult
to perform on routine thicker-cut brain MRs.

Optimize MR Scanner Utilization

Because MRIs typically take the longest to acquire,
maximizing the number of scans performed per shift
could result in cost savings. A recent preliminary study
used neural networks to help determine the optimal time
slot per scan based on various input parameters (scan
protocol, patient age, contrast usage, and protocol mean
of unplanned sequence repeats). This has the potential to
thereby  reduce

optimize utilization and

costs [44].

scanner

Assessment of Image Quality

Technologists and physicists routinely check medical
image quality for various quality-related factors including
appropriate penetration, exposure, coverage, artifacts, and

image clarity. These evaluations are typically performed
via visual inspection and phantoms. However, occasion-
ally suboptimal images are not recognized until many
hours after an exam is completed during image inter-
pretation by the radiologist. With advances in machine
and deep learning, there is now potential to instantly
recognize, or perhaps even predict, poor image quality,
allowing technologists to correct such errors before

ending the imaging exam [45].

Scheduling Patients and Staffing Optimization

Particularly for large practices, scheduling the appropriate
amount of staff for shift coverage can be a complex
problem. Many factors are involved, including time of
day, day of the week, coverage location (emergency
department, inpatient, outpatient), exam complexity,
volume of studies, variety of modalitiess (MR, CT,
ultrasound, x-ray), and referring clinician practice pat-
terns. Sometimes radiologists feel overwhelmed with the
volume and complexity of studies on a given shift, and
other times they are overstaffed. Outside of radiology,
there is already an interest in using machine learning to
optimize staffing, which has implications for increased
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profitability and cost reduction [46]. Another known
problem that involves radiology and all health care
practices are patient “no-shows.” This is a complex
problem that may involve many factors including time,
day of the week, and various patient demographics.
Machine learning has already been applied in this area
in the clinical domain, and similar solutions for
radiology appointments may be valuable to improve

cost-effectiveness [47].

Billing and Collections

Advances in natural language processing (NLP) and
machine learning can be used to better interpret and
classify reports from image-based procedures such that
more accurate claims can be submitted for reimburse-
ment. Insurance denials have been reported to cost health
care organizations as much as 3% to 5%. Denials may be
related to a combination of inputs, rather than due to just
one alone, which can be difficult to decipher. As a result,
hospitals and health care systems are turning to artificial
intelligence to reduce denials, prioritize work queues for
claims resubmissions, and alter processes to help prevent
future denials [48].

Natural Language Understanding of Radiology
Reports

There has been a movement toward standardized radi-
ology reporting templates, such as in RadReport, and use
of a standardized radiology lexicon, such as Radlex
[49,50]. However, wide variation persists between
radiologists and institutions, and reports continue to
contain a large amount of semistructured prose text.
Studies have shown that this can lead to differences in
interpretation among  radiologists and  referring
clinicians [51-53]. With advances in NLP, there have
been ways to extract clinically meaningful data from
such text including critical findings, BI-RADS cate-
gories and findings, and Fleischner Society recommen-
[53-57].

Machine learning approaches have shown promise in

dations often using heuristic techniques

achieving high accuracy and being generalizable to
many domains [58,59]. Recent advances in deeper
machine learning methods may allow for better
semantic understanding of free text and automatic
generation of standardized reports, which can then be
machine

cycled back to
annotated or labeled data [7,60,61]. A potendial

learning algorithms as

application of natural language understanding is the
development of an application that could generate

radiology reports tailored to different audiences, such as
the patient, primary care doctor, or subspecialty
surgeon, for example. Moreover, intelligent text-
understanding systems can recognize important findings
such as critical results, pulmonary nodules, or lesion
measurements; provide standardized terminology; and
insert recommendation

automatically appropriate

statements.

Text Summarization

There is an overabundance of data in today’s EMRs, and
consequently it can be time-consuming for the radiologist
to find relevant information. Machine learning and NLP
can extract pertinent clinical information from the EMR
and present the information in a contextualized fashion to
assist in imaging interpretation [62].

Speech Recognition and Text Translation

Speech recognition systems are widely used in radiology
[63]. Newer advances with deep learning could further
improve speech recognition systems and reduce errors
commonly encountered with current technologies
[15,64]. Also, there has been interest in machine
translation of radiology report templates, and translation
of finalized radiology reports themselves into various

languages that could be beneficial to patients [49].

Image-Based Search Engines

As opposed to traditional search engines using text
searches, advances in image understanding via deep
learning could permit searches using images directly as an
input [65]. For example, one could input an image of the
lungs containing a ground-glass opacity and see other CT
scans containing similar findings, matched with corre-
sponding radiology reports (or even pathology if known).
This technology could augment electronic teaching files
and result in diagnostic assistance technologies.

Population Health and Disease Prevention

Images could be used as an input along with other
measures not only to detect disease presence but to pre-
dict future disease. Already, there are example methods to
match dual energy X-ray absorptiometry scores to CT
images, and coronary calcium scores to nongated CT
chest studies, but future work could be done to create
many other models [66,67]. Much of this would require
building data sets where a disease outcome is known,
available medical

along with all data—images,

pathology, laboratory, and clinical notes. Similarly, one
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could create a seemingly limitless number of prediction
models, such as tolerance to medication, probability of
tumor response to chemotherapy, and survival odds of

a particular disease or surgery.

Radiomics and Image Quantification

Radiomics (or radiogenomics) is the correlation between
the imaging appearance of cancer and the genomics of
such [68]. Advances in traditional machine learning and
more novel deep learning approaches in this area have
[69-71]. Moreover, deep
learning techniques has achieved state-of-the-art results

shown promising results

in biomedical image segmentation, which can be used to
automatically segment and extract volumes of organs,
specific tissues, and regions of interest [72]. The radiology
report of the future may automatically include such
quantitative information, which could be used to assess

disease and guide treatment decisions.

SYMBIOSIS OF ARTIFICIAL INTELLIGENCE
AND MEDICAL SUBSPECIALISTS

Human experts and machines have different strengths.
Accordingly, there are tasks that are better suited for
machines and others for humans. Some advantages of
machines are that they can work 24 hours per day and
contemporaneously. Also, machines may be designed to
provide consistent analysis for a given input or series of
input parameters. This allows for precision and potential
for quantification in results reporting. Machines can
analyze large volumes of data and find complex associa-
tions hidden within these data that may be otherwise
difficult for a human to do [9].

In contradistinction, humans can make inferences
and innovate from very little training data and solve a
wide variety of problems. They are more likely to better
tailor and adjust practice patterns to regional variations,
fostering  relationships, and optimally communicate
findings to referring physicians and patients [73-75].
Finally, radiologists may be better able to perceive a
broader scope of patient care and intentionally not
mention an incidental finding that could lead to
“overdiagnosis”—and potentially negatively impact the
global use of medical imaging [76].

Despite success with everyday image classification,
currently available artificially intelligent models for
medical image analysis represent artificial narrow intelli-
gence, as they focus on narrow specific tasks [21,77-79].
On the other hand, it will take many more years before
such machines could attain artificial general intelligence,

with the ability to apply intelligence to any problem,
similar to that of medical subspecialists.

In addition, there is a relative lack of transparency and
understanding as to how newer, more complex algo-
rithms actually work [80]. For example, in a recent study,
models based on deep learning were better able to predict
the probability of patients developing various diseases
diabetes, heart
schizophrenia from clinical records than other pre-

such as congestive failure, and
existing models and physician-expert diagnosis. Howev-
er, the study authors could not explain what the exact
associations were, or how the machines arrived at their

[27]. The

community is actively working on tools to improve

conclusions machine learning research
understanding of these algorithms, and saliency and
attention maps can be helpful to address some of
these challenges, but more research is needed in this
area [81-83]. Understanding how machine learning
algorithms come to medical conclusions is important,
because ultimately physicians will be explaining such
results to patients.

An additional obstacle to machine learning imple-
mentation in health care is that although there is a
framework to validate such models (as in C-statistics), this
does not fully address the high degree of dependency on
the underlying data to influence the performance of
machine learning models. Although a model may perform
well in a research environment, it may behave differently
when deployed in a “real-world” situation and poorly
generalize to other populations and regions. Prospective
studies will be helpful to address this. In addition, multi-
institutional well-curated data sets sponsored by national
organizations would be helpful to facilitate creation of
more robust models for testing and validation in the
clinical setting.

Ultimately, machine learning has the potential to
dramatically improve patient care. Importantly for ra-
diologists, machine learning algorithms can help address
many problems in current-day radiology practices that
do not involve image interpretation. Although much of
the attention in the machine learning space has focused
on the ability of machines to classify image findings,
there are many other useful applications of machine
learning that will improve efficiency and utilization of
radiology practices today. Moreover, we may see a world
where a symbiosis of subspecialty experts and machines
lead to better care than could be provided by either one
alone. Those practices that implement these technologies
today are likely to better position themselves for the
future.
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TAKE-HOME POINTS

Machine learning is a powerful tool with many
applications that can help radiology practices today
beyond image interpretation.

Some applications include creating study protocols
or decision support, hanging protocols, improving
image quality, decreasing MR scanner time, opti-
mizing staffing and scanner utilization, billing and
collections, reporting, text understanding, image
quantification, radiomics, and population health.
Current machine learning models consist of narrow
artificial intelligence and can provide value in solv-
ing specific tasks.

Integrating human general intelligence and narrow
artificially intelligent models holds promise for
improving radiology practices and patient care.
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