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Abstract

Background: Many techniques are proposed for the quantification of tumor heterogeneity as an imaging biomarker for
differentiation between tumor types, tumor grading, response monitoring and outcome prediction. However, in clinical
practice these methods are barely used. This study evaluates the reported performance of the described methods and
identifies barriers to their implementation in clinical practice.

Methodology: The Ovid, Embase, and Cochrane Central databases were searched up to 20 September 2013. Heterogeneity
analysis methods were classified into four categories, i.e., non-spatial methods (NSM), spatial grey level methods (SGLM),
fractal analysis (FA) methods, and filters and transforms (F&T). The performance of the different methods was compared.

Principal Findings: Of the 7351 potentially relevant publications, 209 were included. Of these studies, 58% reported the use
of NSM, 49% SGLM, 10% FA, and 28% F&T. Differentiation between tumor types, tumor grading and/or outcome prediction
was the goal in 87% of the studies. Overall, the reported area under the curve (AUC) ranged from 0.5 to 1 (median 0.87). No
relation was found between the performance and the quantification methods used, or between the performance and the
imaging modality. A negative correlation was found between the tumor-feature ratio and the AUC, which is presumably
caused by overfitting in small datasets. Cross-validation was reported in 63% of the classification studies. Retrospective
analyses were conducted in 57% of the studies without a clear description.

Conclusions: In a research setting, heterogeneity quantification methods can differentiate between tumor types, grade
tumors, and predict outcome and monitor treatment effects. To translate these methods to clinical practice, more
prospective studies are required that use external datasets for validation: these datasets should be made available to the
community to facilitate the development of new and improved methods.
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Introduction

Tumors are often inhomogeneous. Regional variations in cell

death, metabolic activity, proliferation and vascular structure are

observed. There is increasing evidence that solid tumors may

consist of subpopulations of cells with different genotypes and

phenotypes [1]. These distinct populations of cancer cells can

interact in a competitive way [2] and may differ in sensitivity to

treatments [3,4]. This heterogeneity can be detected using

diagnostic imaging techniques at a genetic, molecular or cellular

level [4,5], or at a cell population level. The advantage of

diagnostic imaging techniques is their non-invasive nature and the

fact that the whole tumor is taken into account, whereas cellular

diagnostic techniques are invasive and limited to a discrete set of

tumor samples. Various imaging techniques are available to

visualize the heterogeneity in tissue characteristics, such as

necrosis, metabolic activity, cell density and vascularity. Observed

heterogeneity in an image is a reflection of the phenotypic

variation of the tumor and is reported to be associated with

underlying gene-expression patterns [6].

Image heterogeneity can be quantified using a variety of texture

analysis methods. As such, image heterogeneity is potential

biomarker for tumor characterization, for response prediction

and monitoring. Parameters in hot spots, as quantified with

dynamic contrast-enhanced magnetic resonance imaging (DCE-

MRI), are more relevant for monitoring tumor response than

parameters averaged over the whole tumor [7–9]. When a region

of the tumor is not well vascularized or is hypoxic, chemotherapy

and radiotherapy are more likely to fail. The existence of poorly

vascularized or hypoxic areas within a tumor is an important

component of tumor radiation resistance and correlates with

treatment failure [10]. In radiotherapy, the heterogeneity can be

used to guide treatment [11,12]: an ongoing trial is currently

escalating the dose to the part of the tumor with high standardized

uptake values [13]. Also for computed tomography (CT), image

heterogeneity has prognostic value [6].
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Several methods are available to quantify tumor heterogeneity

from imaging data. Many studies have used histogram-derived

features such as percentile values, standard deviation (SD) and

enhancing fraction. However, these features do not take into

account the spatial distribution of the intensity values. In contrast,

texture methods take spatial information into account by

quantifying the spatial variations in the images. Ideally, these

methods are independent of the absolute signal intensities in the

image. They provide additional and independent information

(such as the average signal intensity) compared to histogram-

derived measures. These methods result in features which can be

considered to be imaging biomarkers providing information on the

underlying tumor heterogeneity. Some of these features are related

to image properties that are visually perceived by the radiologist,

whereas others are more abstract [14].

By means of a systematic review, the aim of this study is to

investigate the performance of different heterogeneity imaging

biomarkers extracted from diagnostic tumor images for differen-

tiation between tumor types, tumor grading, outcome prediction

and treatment monitoring.

The following research questions were formulated:

N Which analysis methods are used to quantify heterogeneity or

texture in tumor imaging, with the aim to differentiate between

tumor types, tumor grading, outcome prediction and treat-

ment monitoring?

N What are the reported performances of the different analysis

methods? Is there a relation between performance and analysis

method?

What is the potential clinical impact of the methods? Can the

performance results be generalized? Is the performance evaluated

in addition to established imaging biomarkers?

Methods

Data Sources and Search method
This review was performed in accordance with the PRISMA

(Preferred Reporting Items for Systematic Review and Meta-

Analyses) guidelines [15], with details summarized in Checklist S1.

In January 2013 the study protocol was registered with the

International Prospective Register of Systematic Reviews (Identi-

fication number: CRD42013003634) [16]. A systematic search

was conducted in the databases of Medline, Embase, and

Cochrane Central. The search was performed with the aid of an

experienced librarian on September 20th 2013.

The following topics were used for the searches:

1. Neoplasms

2. Heterogeneity, texture

3. MRI, MRS, CT, PET, SPECT, ultrasonography

4. Differentiation between tumor types, tumor grading, classifi-

cation, staging, treatment response, survival, and treatment

outcome

Full details of the Embase search is included in Text S1. The

results from all three searches were combined and verified to

ensure exclusion of publications containing the same title, written

by the same authors, and published in the same journal. The

remaining publications were considered for study selection.

Study Selection
Two authors (L.A. and J.F.V.) independently reviewed the titles

and abstracts. The selected publications then underwent full-text

screening. During the title and abstract review, any discrepancies

about study inclusion were resolved by full-text screening. Any

discrepancies during the following stages were resolved by

discussion. The bibliographies of seminal review papers [17–19]

were reviewed to identify additional relevant articles.

Inclusion and exclusion criteria
We included only publications related to diagnostic imaging

which reported quantification of tumor heterogeneity or tumor

texture with the goal to differentiate between tumor types, tumor

grading, outcome prediction and tumor response monitoring. No

restrictions were made based on location, type, stage or grade of

malignancy. Prior to review, a decision was made to exclude any

study with too few participants, i.e., for patient studies (n,10) and

for animal studies (n,5). Therefore, all case studies, and studies

with no information on the number of subjects, were excluded. In

addition, all the following types of studies were excluded:

N publications based on non-tumor images;

N publications not based on quantitative assessment of hetero-

geneity or texture in images

N publications without one of the following goals: differentiation

between tumor types, tumor grading, or outcome prediction or

treatment monitoring;

N publications not based on in vivo studies (histology, phantom,

ex vivo, synthetic data);

N publications describing non-original research (editorial, letter

to the editor, review, meta-analysis, opinion publications).

Data extraction
A data extraction form was designed. All selected publications

were independently reviewed and data extraction was cross-

checked. Disagreements between the reviewers were resolved by

consensus. The following data were extracted from the full papers:

year of publication, human or animal study, type of study

(retrospective or prospective), number of subjects, number of

tumors, location of tumor, imaging modality, tracer/contrast

agent, goal of heterogeneity/texture analysis, and type of

heterogeneity/texture quantification method used. For studies

reporting on the same analysis method based on the identical

dataset, only the latest publication was included. For publications

reporting classification experiments, the following data were

extracted: number of candidate heterogeneity features, dimen-

sionally reduction technique used, number of selected features

used in the best classification experiment, the results of the best

classification experiment, i.e., accuracy, sensitivity, specificity, area

under the receiver operator curve (AUC), type of cross-validation

used, and use of an external validation set. For publications using

statistical hypothesis testing the following data were extracted: the

number of candidate features, and the number of features that

showed a significant difference between outcome categories

(before and after Holm-Bonferroni correction) [20]. All publica-

tions were divided into two categories:

N Publications reporting cross-sectional measurements with the

aim to differentiate between tumor types, tumor grading, and

treatment outcome prediction.

N Publications reporting longitudinal measurements for tumor

treatment monitoring.
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Data synthesis and analysis
The imaging modalities were summarized into four categories: i)

magnetic resonance imaging (MRI), ii) computed tomography

(CT), iii) positron emission tomography (PET), single photon

emission computed tomography (SPECT), and iv) ultrasonography

(US). No further subdivision was made regarding the type of

imaging protocol or use of contrast agent.

Image analysis methods to estimate tumor heterogeneity were

divided into four categories: non-spatial methods, local spatial

distribution methods, fractal analysis, and a category consisting of

filters and transforms.

Non-spatial methods (NSM). These methods characterize

tumor heterogeneity by non-spatial descriptors, such as descriptors

of the gray-level frequency distributions: standard deviation,

skewness, maximum, minimum, range, peak height, peak position,

and percentile values.

Spatial gray-level methods (SGLM). Methods included in

the second category extract the local spatial image intensity

distribution. This category includes grey-tone spatial-dependence

matrix (GTSDM) [21], neighborhood gray-tone difference matrix

(NGTDM) [22], run-length matrix (RLM), and Local Binary

Pattern (LBP) [23]. The GTSDM, originally proposed by Haralick

et al. [21], is often referred to as co-occurrence or the second-order

histogram. When divided by the total number of neighboring

pixels in the image, this matrix becomes the estimate of the joint

probability of two pixels at a distance along a given direction

having a particular gray value. The NGTDM, originally proposed

by Amadasm and King [22], is based on spatial changes in gray

values by inspecting the difference between gray levels of a specific

pixel and the average gray level of their surrounding neighbors.

The RLM, originally proposed by Galloway [24], is subsidiary to

the observation that a coarse texture would have relatively longer

gray level runs compared to a fine texture. This matrix provides

information about runs of pixels with the same gray level values in

a given direction. LBP, originally proposed by Ojala et al. [25] and

later modified to a rotation and scale invariant approach [23],

represents local texture. In its simplest form it labels the pixels of

an image by thresholding the neighborhood of each pixel and

considers the result as a binary number.

Fractal analysis (FA). The third category consists of FA

methods that overcome the scale problem by providing a statistical

measure reflecting pattern changes as a function scale. The two

basic parameters in FA are fractal dimension (FD) and lacunarity

[26]. An often used method to estimate FD is box counting [26].

This procedure systematically overlays an image with a series of

grids with increasing/decreasing size. For each step, this proce-

dure captures the predefined relevant features [27]. Another

frequently used technique in FA is the blanket method [26], which

is often used in its extended form, as described by Peleg et al. [28].

This method estimates the surface area by measuring the volume

between an upper and lower blanket.

Filters and Transforms (F&T). The fourth category con-

sists of a collection of image processing algorithms that extract

texture features. Examples are methods that use techniques

defined in the spatial domain such as filters (Gabor filters or

Law’s filters) or transformations to other domains (Fourier

transform, Wavelet transform, S-transform, discrete cosine trans-

form). Since the various methods have only been used in a limited

number of publications included in the present review, these

methods were grouped together.

Publications reporting classification

experiments. Publications were considered classification stud-

ies if they reported a classification result such as accuracy,

sensitivity, specificity or AUC values. Only publications in which

the results of the classification experiments were solely based on

texture parameters were further analyzed. These studies often

utilize a high number of candidate features to describe a tumor.

When the number of extracted features is too large to perform a

statistically meaningful classification [29], the extracted features

can be redundant in the information they retain. Because an

increase of dimensionality in the feature space results in an

increase of its volume, the feature space is sparsely filled. The use

of an extensive number of features for classification purposes can

result in over-fitting, which reduces the possibility of generaliza-

tion; this paradox is generally referred to as the ‘curse of

dimensionality’ [30].

To keep the system manageable, dimensionality reduction

techniques were commonly applied to select a subset of features

that were relevant for the classification problem. The ratio

between the number of tumors classified and the dimensionality of

the feature space (e.g., the number of selected features) should be

chosen in a meaningful way. In pattern recognition applications,

the rule of thumb is to use 5–10 datasets per feature per category

[31]. Therefore, we evaluated the number of candidate features,

the number of selected features, and the ratio between the number

of tumors included in the study and the number of selected

classification features. A one-way ANOVA was used to test for

differences in classification results between the modalities and

analysis methods.

Publications reporting on significance testing. A com-

monly used approach to test the validity of the selected features is

significance testing. For heterogeneity analysis, many publications

compute a large number of features. As multiple comparisons

generally require a stronger level of evidence to be considered

significant, the Holm-Bonferroni correction [20] can be applied.

This correction allows for the significance levels for single and

multiple comparisons to be directly comparable. In these

publications, we evaluated whether a Holm-Bonferroni correction

was applied and, if this was not the case, computed the number of

significant features after correction using the available data. A one-

way ANOVA was used to test for differences in the number of

significant features, before and after Holm-Bonferroni correction,

between the modalities and the analysis methods used.

Results

Figure 1 presents details on the literature search. In summary,

of the 7351 potentially relevant articles, 480 (6.5%) were

considered for inclusion after abstract review. After these latter

papers had undergone full-text screening, an additional 249

publications were excluded. The remaining 231 original publica-

tions entered the data extraction phase. In this phase an additional

22 papers [32–53] were excluded as they reported results of a

similar analysis method on the same dataset as that used in

another paper; for these publications, the most recent one was

included in the analysis. Finally, data from 209 studies [7,14,54–

228] were extracted for further analysis.

General characteristics
Table 1 presents the characteristics of the included publications

(after removing duplicate publications). A publication may include

more than one imaging modality, analysis method, or goal. Two

studies (1%) reported on two imaging modalities, and 66 studies

(32%) reported on two or more analysis methods.

Since 2008, the number of imaging studies quantifying tumor

heterogeneity has been steadily increasing, i.e. from 8 papers in

2006–2007 to 66 publications in 2012–2013 (figure 2-A). Prior to

2006, heterogeneity was mainly studied based on US data
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(Figure 2-B). Since 2007, most studies quantifying tumor hetero-

geneity are based on MRI. Generally, the non-spatial method

(NSM) and the spatial gray-level method (SGLM) are the most

frequently used to analyze tumor heterogeneity (Figure 2-C).

Although the number of publications using these methods has

increased since 2007, their contribution to heterogeneity literature

is relatively stable. The number of studies reporting tumor

response monitoring has varied over the years, ranging from 0–

20% (Figure 2-D).

Breast tumors were studied in 33% (n = 69) of the publications.

Figure 3 shows the distribution of studies per tumor location.

Figure 3-A shows the use of imaging modalities for quantification

of tumor heterogeneity per primary tumor location. MRI is used

primarily for brain and breast tumors, CT for lung and

Figure 1. Results of the literature search. PRISMA flow diagram for study collection [15], showing the number of studies identified, screened,
eligible, and included in the systematic review. This study is registered with the PROSPERO registry for systematic reviews (Identification number:
CRD42013003634) [16].
doi:10.1371/journal.pone.0110300.g001
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gastrointestinal tumors, PET for gastrointestinal, lung tumors and

sarcoma, and US for breast tumors. Heterogeneity analysis of

brain tumors was performed almost exclusively with MRI, while

for breast tumors both MRI and US were used.

Figure 3-B presents the analysis methods used per primary

tumor location. For almost all locations, all methods were used.

For prostate, breast, and head and neck analysis, the SGLM was

the most frequently used. For all other locations, the NSM was the

favored modality. Heterogeneity analyses for longitudinal studies

were mainly performed for gastrointestinal and breast tumors

(Figure 3-C).

Figure S1 summarizes the publications included in the present

review (n = 209) in a matrix form. The publications are divided

into different imaging modalities and analysis methods, and are

available for download for each cell separately. Each cell in the

matrix links to the supplementary EndNote file containing the

records for these publications.

Figure 4-A shows the relation between imaging modality and

analysis methods for cross-sectional studies. In general, 74% of

these studies used either MRI or US. The SGLM (37%) and NSM

(36%) are most frequently used to grade and diagnose tumors.

Figure 4-B shows the relation between imaging modality and

analysis method for the longitudinal studies (n = 27). MRI was

Table 1. Characteristics of the included publications (n = 209).

Characteristic n %

Imaging method MRI 75 36%

CT 40 19%

PET 14 7%

US 81 39%

Analysis method NSM 121 58%

SGLM 103 49%

FA 21 10%

F&T 58 28%

Study goal Diagnosis/grading/outcome pred. 182 87%

Response monitoring 27 13%

Study type Retrospective 118 56%

Retrospective (with inclusion criteria) 63 30%

Prospective 28 13%

Type of subjects Human 197 94%

Animal 12 6%

Type of experiment Classification 139 67%

Significance testing 64 30%

Neither 6 3%

Imaging modalities: magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), ultrasonography (US).
Analysis methods: non-spatial methods (NSM), spatial grey level methods (SGLM), fractal analysis (FA) methods, and filters and transforms (F&T).
doi:10.1371/journal.pone.0110300.t001

Figure 2. Number of publications reporting on tumor heterogeneity analysis for all publications bi-annually. Total number of
publications (A), publications per imaging modality (B), publications per analysis method (C), and publications per goal (D).
doi:10.1371/journal.pone.0110300.g002
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Figure 3. Publications reporting on quantification of tumor heterogeneity in cancer sites summarized for imaging modality (A),
analysis method (B), and study aim (C). Publications can report on more than one analysis method. The acronyms used: Gyn – gynecological,
H&N - head and neck, GIST – gastrointestinal.
doi:10.1371/journal.pone.0110300.g003
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used in 70% of these studies and PET in 11%. In 7% of the

studies, US-based heterogeneity quantification was used for tumor

response monitoring. NSM is the most frequently used (69%)

analysis method in longitudinal studies.

A relatively small number of all studies (13%) utilized a

prospective study design. Figure 5-A shows the relation between

imaging modality and analysis method used for cross-sectional

studies (n = 12). US is the most frequently used modality, whereas

NSM is the most frequently used analysis method. Figure 5-B

shows the relation between imaging modality and analysis method

for publications reporting longitudinal studies (n = 16). Again,

most data were analyzed with NSM. In contrast to MRI, CT, US

and PET are rarely used for heterogeneity quantification in

prospective longitudinal studies.

Publications reporting classification experiments
Of all included studies, 67% (n = 139) reported classification

experiments and 30% reported significance testing. The remaining

3% either did not report quantitative results or the experiments

were not completely described. Also, 23 studies only reported

results of classification experiments where the texture features were

combined with non-texture features. For these latter publications,

it was not possible to extract the performance of the texture

features separately and, therefore, these results were excluded from

further analysis. Additionally, 10 studies were excluded because

the number of generated or selected features was lacking. Of the

papers reporting classification experiments (n = 106), 45% used

US, 37% used MRI, 13% used CT, and 5% used PET. In 42% of

the classification papers, features originating from different texture

analysis methods were combined. Some studies reporting classi-

fication experiments (n = 39) performed no feature reduction, and

the median number of candidate features used in these studies (6)

was significantly lower than that of candidate features in the

studies using feature reduction techniques (38). The remaining 67

studies reporting classification experiments used one of the

methods commonly applied in statistics, pattern recognition, or

machine learning. These methods were summarized into three

categories: filters, wrappers and embedded methods [229].

Figure 6 shows the relation between the number of candidate

features and the number of selected features used in classification

experiments for different imaging modalities (Figure 6-A) and

different analysis methods (Figure 6-B). For the papers presented

on the dotted line, no feature selection was performed. The

number of candidate features ranged from 1–5280 (median 22)

while the number of selected features ranged from 1–476 (median

3). The distribution of the numbers of selected features can be

assessed as boxplots for imaging modality (Figure 6-C) and for

analysis methods (Figure 6-D).

About 63% of the publications describing a classification

experiment, reported cross- validation or training test sets as a

technique to limit the effect of over-fitting on the available data.

Figure 6-B shows that the combination of features from different

methods generally leads to a higher number of candidate features.

In general, in publications reporting the use of more than one

analysis method more extensive feature reduction is applied

compared to publications reporting on the use of the separate

analysis methods.

In the classification experiments, one or more of the following

performance measures were reported: sensitivity, specificity,

accuracy, or AUC. Figure 7-A shows the AUC per imaging

modality and Figure 7-B the AUC per analysis method. The

differences in performance (as measured by AUC) are shown in

Figure 7-C per imaging modality and in Figure 7-D per analysis

method.

The supplementary material provides the figures for accuracy

(Figure S2), sensitivity (Figure S3) and specificity (Figure S4) per

imaging modality and per analysis method. In these figures, the

reported performance is depicted as a function of the tumor-

feature ratio (ratio between the number of tumors included and

the number of selected features). In general, the tumor-feature

Figure 4. All included publications reporting cross-sectional (A) and longitudinal (B) studies. Several publications report more than one
analysis method.
doi:10.1371/journal.pone.0110300.g004

Figure 5. Publications reporting a prospective study design cross-sectional (At) and longitudinal (B) studies. Several publications
report more than one analysis method.
doi:10.1371/journal.pone.0110300.g005
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ratio ranged from 0.46–502 (median 20) with (on average) 29% of

the publications showing a tumor-feature ratio #10.

With respect to the analysis method, publications using the

F&T, or a combination of methods, had the highest risk of a

tumor-feature ratio #10, i.e. 53% and 42%, respectively. With

regard to imaging modality, CT publications had the highest

percentage (43%) with a tumor-feature ratio ,10.

Using a one-way ANOVA, no significant differences were found

in the performance measures between the modalities or between

the analysis methods used. However, there was a negative

correlation between the logarithm of the number of tumors per

selected feature and the AUC (r = 20.32, p,0.05) and the

specificity (r = 20.48, p,0.05).

Publications using statistical hypothesis testing
Of all included studies, 30% (n = 64) reported statistical

hypothesis testing with the number of features ranging from 1–

320 (median 4). Of these studies, 39% were based on MRI, 26%,

on CT, 14% on PET, and 21% on US. Similarly, in 61% of the

cases, data were analyzed using NSM, 12% using SGLM, 3%

using FA, 6% using F&T, and 18% using a combination of these

methods. The number of significant features, as reported by the

authors, ranged from 0–76 (median 1). Since multiple comparisons

generally require a stronger level of evidence to be considered

significant, the Holm-Bonferroni correction [20] was applied by

the original research authors, or by the authors of this review

paper. This correction allows direct comparison to be made of the

significance levels of single and multiple comparisons. For eight

papers the correction could not be performed due to missing

information. After the Holm-Bonferroni correction, the number of

significant features ranged from 0–6 (median 1). Figure 8 shows

the number of significant features before and after the Holm-

Bonferroni correction per imaging modality (A) and per analysis

method (B). In 45% of the papers the number of significant

features decreased after correction. Using a one-way ANOVA, no

significant differences were found in the number of significant

features between the modalities. With respect to the analysis

method used, a one-way ANOVA established a significant

difference in the number of significant features (p,0.018).

Publications using SGLM reported more significant features.

However, after the Holm-Bonferroni correction, the numbers of

significant features were similar between all analysis methods used.

Figure 6. Number of features used in classification experiments for different imaging modalities (A) and for different analysis
methods (B). Boxplot representing distribution in number selected features for imaging modality (C) and for analysis methods (D). To enhance
visibility, we excluded for both boxplots two studies with large numbers of selected features.
doi:10.1371/journal.pone.0110300.g006
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Figure 7. The AUC for different imaging modalities (A) and for different analysis methods (B) as a function of tumor-feature ratio in
the classification experiments. The scatter plot shows each imaging modality and analysis method separately. Dotted line represents the ratio of
10 tumors per selected feature. Boxplot representing distribution in AUC for imaging modality (C) and for analysis methods (D).
doi:10.1371/journal.pone.0110300.g007

Figure 8. Number of significant features before and after Holm-Bonferroni correction in publications reporting on significance
testing for all image modalities (A) and all analysis methods (B).
doi:10.1371/journal.pone.0110300.g008
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Discussion

This systematic review investigated the use and performance of

heterogeneity or texture quantification methods in radiological

images for differentiation between tumor types, tumor grading,

outcome prediction and treatment response monitoring. After a

systematic literature search yielding 7351, 209 unique studies

reported on heterogeneity as an imaging biomarker in tumor

imaging. Since 2008, an increasing number of publications have

reported on quantification of tumor heterogeneity. Since the

present review is based on the existing literature, it reflects the

modalities, heterogeneity analysis methods, and location of tumors

that were investigated by the authors of the included studies.

Because almost all of the included publications presented positive

results, it should be noted that this literature probably contains an

over presentation of modalities, heterogeneity analysis methods

and tumor locations for which heterogeneity analysis seems to

work.

Until 2006 most heterogeneity papers were based on US,

whereas after 2007 there was an increase in the number of studies

using MRI. During the present study period, NSM and SGLM

were the most frequently used methods. Most of the papers focus

on heterogeneity quantification to differentiate between tumor

types, tumor grading or outcome prediction; however, the number

of papers with the goal of response monitoring has recently

increased. In tumor heterogeneity quantification, US is the most

frequently used imaging modality for differentiation between

tumor types, tumor grading and outcome prediction, and MRI is

the most frequently used modality for treatment response

monitoring. For monitoring of treatment response, NSM is the

most frequently used method. To differentiate between tumor

types and tumor grading, all methods are evenly distributed over

all the modalities.

The performance of the heterogeneity features was mostly

(67%) evaluated by classification experiments reporting perfor-

mance measures such as accuracy, sensitivity, specificity and AUC.

Papers reporting only on the results of the combination of texture

features with other features were excluded from the analysis. Some

authors selectively report on sensitivity without mentioning the

specificity. The AUC is the preferred measure to report

performance as it is more comprehensive compared to a measure

based on a single threshold, such as accuracy. Only one paper

reported an AUC of 0.5, all other papers reported higher values.

This is most likely caused by publication bias: only the positive

performance of heterogeneity features tend to reach the journals.

Only 63% of the publications reporting classification results

described the use of the cross-validation technique to limit the

effect of over-fitting on the available data. We found no relation

between the performance measures and the modality, or with the

analysis method used. However, a negative correlation was found

between the tumor-feature ratio and the AUC. When more

tumors were available per selected feature, the AUC was lower.

This correlation may be the result of overfitting of the data when

fewer tumors per feature are available.

Publications using statistical hypothesis testing often did not

perform a correction of the significance levels for multiple

comparisons. For eight papers, due to missing information, a

retrospective Holm-Bonferroni correction could not be performed

by the authors. For 45% of the papers, the number of significant

features decreased after the Holm-Bonferroni correction. We

found no relation between the number of significant features after

the Holm-Bonferroni correction and the modality or the analysis

method used.

The number of prospective studies is small, i.e. only 13% of all

studies. These latter studies are mainly based on MRI and report

NSM features. Although the use of retrospectively collected data is

necessary to develop, test and evaluate heterogeneity as a

biomarker for differentiation between tumor types, tumor grading,

outcome prediction and treatment response monitoring, the real

test is to evaluate the performance of the developed features in a

prospective study design. When using a retrospective study design,

the criteria for the inclusion of cases are often not (or not clearly)

described, so that the performance of the heterogeneity feature can

be overestimated. Using a prospective study design, with clear

inclusion criteria, the actual performance of heterogeneity features

can be more reliably assessed.

Moreover, in most included studies, performance of the

heterogeneity feature is evaluated without taking into account

currently accepted clinical features, such as mean signal intensity,

tumor size, tumor grade, or border regularity of a tumor. Some

studies report only the combined classification performance of

heterogeneity and clinical features. A large number of publications

even use the mean signal intensity as a feature to estimate tumor

heterogeneity, even though this is clearly not a heterogeneity

measure (i.e., mean signal intensity does not measure intra-tumor

heterogeneity). Based on these types of studies, it is not possible to

evaluate the added value of heterogeneity to currently accepted

clinical features. Whereas researchers are interested in the

performance of the feature itself, clinicians are interested in the

additional value of the feature compared with the currently

available clinical biomarkers. Since the quantification of hetero-

geneity is usually more complex and computationally more costly

than computing the mean intensity, the benefit of the added effort

to characterize heterogeneity needs sufficient motivation. To

enable the translation of imaging biomarkers from the research

stage to clinical practice, future research should focus on studies

investigating the additional value of the proposed heterogeneity

biomarker compared with the established clinical markers.

In this systematic review, comparison between the performance

of different methods for a certain classification task was not

possible due to the large variety in the datasets used and the

classification tasks posed. The search for new and optimal

(combinations of) heterogeneity features would benefit from

developing reliable datasets (for different classification problems)

that are available to the scientific community. Large well-defined

datasets are a prerequisite for objective comparison of methods.

Future studies should have a design that takes the requirements

from pattern recognition into account, i.e. a balanced number of

subjects and features, cross-validation, independent test datasets,

and a prospective study design. Satisfying these requirements will

allow more reliable evaluation of the value of heterogeneity

features.
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Figure S1 Numbers of publications for a specific imaging

modality and analysis method. The supplementary EndNote files

corresponding to the records for these publications (for each cell in

the matrix separately) are publically available. To download

separate files just click on a cell of interest in the figure.

(PDF)

Figure S2 The accuracy for different imaging modalities (A) and

for different analysis methods (B) as a function of tumor-feature

ratio in the classification experiments. The scatter plot shows each

imaging modality and analysis method separately. Dotted line

represents the ratio of 10 tumors per selected feature. Boxplot
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representing distribution in AUC for imaging modality (C) and for

analysis methods (D).

(EPS)

Figure S3 The sensitivity for different imaging modalities (A)

and for different analysis methods (B) as a function of tumor-

feature ratio in the classification experiments. The scatter plot

shows each imaging modality and analysis method separately.

Dotted line represents the ratio of 10 tumors per selected feature.

Boxplot representing distribution in AUC for imaging modality (C)

and for analysis methods (D).

(EPS)

Figure S4 The specificity for different imaging modalities (A)

and for different analysis methods (B) as a function of tumor-

feature ratio in the classification experiments. The scatter plot

shows each imaging modality and analysis method separately.

Dotted line represents the ratio of 10 tumors per selected feature.

Boxplot representing distribution in AUC for imaging modality (C)

and for analysis methods (D).

(EPS)

Text S1 Comprehensive EMBASE search strategy used in the

systematic review.

(PDF)

Checklist S1 PRISMA checklist for the systematic review:

Quantification of heterogeneity as a biomarker in tumor imaging.

(PDF)
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