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Radiogenomics: What It Is and
Why It Is Important

Maciej A. Mazurowski, PhD

Abstract

In recent years, a new direction in cancer research has emerged that focuses on the relationship between imaging phenotypes and
genomics. This direction is referred to as radiogenomics or imaging genomics. The question that subsequently arises is: What is the
practical significance of elucidating this relationship in improving cancer patient outcomes. In this article, I address this question.
Although I discuss some limitations of the radiogenomic approach, and describe scenarios in which radiogenomic analysis might not be
the best choice, I also argue that radiogenomics will play a significant practical role in cancer research. Specifically, I argue that the
significance of radiogenomics is largely related to practical limitations of currently available data that often lack complete characterization
of the patients and poor integration of individual datasets. Radiogenomics offers a practical way to leverage limited and incomplete data

to generate knowledge that might lead to improved decision making, and as a result, improved patient outcomes.
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INTRODUCTION TO RADIOGENOMICS

Increasingly, even casual readers of the scientific literature
are encountering the terms “radiogenomics,” “imaging
genomics,” and “radiomics.” Because they have only
recently been introduced, their usages and definitions are
still in flux. The term “radiogenomics,” in particular, has
been inconsistently used to refer to a range of cancer-
related endeavors and research topics.

Most often, “radiogenomics” refers to the relationship
between the imaging characteristics of a disease (ie, the
imaging phenotype or radiophenotype), and its gene
expression patterns, gene mutations, and other genome-
related characteristics [1,2]. As a simplification, I will
refer to them collectively as “genomic characteristics” or
simply “genomics.” A particular focus of radiogenomic
analysis has been on the relationship between imaging
phenotypes and gene expression patterns which include
expressions of individual genes as well as measures that
summarize expressions of speciﬁc gene subsets (eg tumor

molecular subtype, or Oncotype DX). ‘Radiogenomics’
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also refers to a research effort aimed at finding this rela-
tionship. Another term used to refer to this kind of
research is imaging genomics.

Another, also very common, use of the term ‘radio-
genomics’ is to refer to the analysis that looks for asso-
ciations between patient genetics and his/her reaction to
radiation therapy [3], with a focus on radiation toxicity.
As opposed to an effort to match imaging phenotype and
genomic characteristics, this genre of research focused on
phenotypes representing radiation toxicity [3]. In 20009,
the Radiogenomics Consortium was established in the
United Kingdom [4] in relation to this research area.

Finally, ‘radiogenomics’ has been equated with
another approach called ‘radiomics’ [5-7]. However,
rather than describing a particular relationship of interest,
radiomics focuses on the methodology used in the anal-
ysis. Specifically, radiomics involves extraction of many
quantitative features from images, using computer algo-
rithms. The extracted features can be evaluated in relation
to other data of interest, including patient outcomes.
These features can also be related to genomic character-
istics and such a pursuit could be referred to as the
‘radiomics approach to radiogenomics.’

STATE OF THE ART IN BRIEF

The literature on radiogenomics is limited, but a rapidly
increasing number of articles are appearing in relation to
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brain cancer [8-11], particularly glioblastoma, breast
cancer [12-16], lung cancer [17], and other cancers.
Because the objective of this article is to discuss the
significance of radiogenomics research, below I provide an
overview of the general level of advancement, rather than
an exhaustive review of specific studies in the field.

In glioblastoma (GBM), Zinn et al [8] showed that an
upregulated PERIOSITIN gene is associated with a high
tumor volume in FLAIR MRI exams. Jamshidi et al [9]
showed that specific molecular phenotypes correlate
with some imaging traits in GBM. Further evidence of
the potential association between molecular phenotypes
and imaging can be found in [10] and [11].

In breast cancer, Yamamoto et al [12] showed the po-
tential for an association between imaging and genomics
with a small sample of 10 patients. This was followed up by
discovering a relationship between semi-automatically
extracted imaging features describing MRI enhancement
dynamics with Luminal A and Luminal B subtypes [13],
[14] and Oncotype DX [15], [16]. Semi-automatic feature
extraction involves both a human reader and a computer
algorithm.

In lung cancer Gevaert et al [17] showed a correlation
between molecular phenotypes and some imaging traits
in lung computed tomography (CT). Radiogenomic
analysis has also been applied to hepatocellular carcinoma
[18] and clear cell renal cell carcinoma [19].

A typical research study in radiogenomics involves
manual or semiautomatic assessment of imaging features
and their correlation with individual gene expressions,
combined gene expression patterns, such as previously
defined genomic subtypes, and other molecular pheno-
types. The currently available studies are typically char-
acterized by smaller sample sizes (<100), which limit the
conclusions that can be drawn.

LIMITATIONS AND SIGNIFICANCE

Radiogenomics attempts to establish and examine the
relationship between tumor genomic characteristics and
their radiologic appearance. Although there is certainly a
lot to learn about these relationships, one could ask: what
is the practical significance of radiogenomic discoveries?
From the perspective of the patients, cancer patients in
this case, it is their outcomes that are of greatest interest,
such as survival, time to recurrence, or response to a
particular treatment. A question appears: If imaging data
and particularly specific features extracted from the im-
ages are available along with the outcome of interest, why
not simply build a model that relates the imaging features
to the outcomes directly? Relation between some imaging

features and outcomes is already established and utilized
in treatment planning. What is the benefit of including
genomics in the mix?

One could argue that using genomics as an interme-
diate step in the analysis could damage the potential of
imaging to predict patient outcomes. Specifically, current
models that show associations of molecular phenotypes to
outcomes and usage of different therapeutic regimens are
highly imperfect. These models often show only minor
differences in outcome for various molecular phenotypes
(eg, for different molecular subtypes) and therefore pro-
vide limited prognostic/predictive values. Radiogenomic
models relating imaging data to genomics, especially now,
in their early days, are also capturing fairly weak or noisy
relationships. When the tenuous imaging to genomics and
genomics to outcomes relationships are combined to
establish an imaging to outcomes relationship, the
resulting link might be very weak or nonexistent.

Another reason for relating imaging features directly to
outcomes is that imaging phenotypes potentially contain
information that is not available in genomics data. For
example, gene expression patterns are typically assessed
based on a relatively small tumor tissue sample, or “aver-
aged” from tissue samples from multiple tumor regions,
and therefore may not reflect the usual heterogeneity of
cancerous tumors [20]. Imaging on the other hand can
potentially capture this heterogeneity [21]. Constructing a
radiogenomic model first and then applying it to predict
outcomes without incorporating the imaging-outcomes
data in the model limits the information from imaging
available to predict outcomes to what is already contained
within tumor genomics. The imaging information that
complements genomics is not used in such a scenario. To
utilize such complementary information, a model directly
relating imaging to outcomes is needed.

These are limitations of radiogenomics. However, this
does not at all mean that radiogenomic analysis is without
use. I will argue that the significance of discoveries in
radiogenomics is largely related to a very practical aspect of
science: availability of data and availability of knowledge.

As a result of prior and current data collection efforts,
various data sets, both private and public [22,23], are
available containing different combinations of imaging,
genomics, and outcomes data (often just one or two
components). The quality of the data components may
differ dramatically among data sets.

Specifically, well organized molecular data repositories
are publically available. To develop the field of radio-
genomics, recent efforts have been undertaken to assemble
large cancer imaging data sets (eg, The Cancer Imaging
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Archive [22]). On the other hand, routine imaging data
are readily available in large quantities in patient records
and can be relatively easily and cheaply collected retro-
spectively by investigators working at large clinical in-
stitutions (although sharing such data poses difficulties).
Outcomes data may be equally easy to collect if available,
however, outcomes of interest may occur after an extended
time period, limiting their availability.

Radiogenomics allows imperfect data sets such as these
to be leveraged in conjunction with prior knowledge of the
relationship between outcomes and imaging genomics to
draw new conclusions. For example, let’s assume that
some research has shown that a specific genomic charac-
teristic related to poorer survival. A research group has a
dataset available that contains genome-wide gene expres-
sion data and imaging data but no outcomes data. The
research group builds a model that represents specific
genomic characteristics in terms of imaging features, and
conducts an analysis that establishes the relationship be-
tween some imaging features and genomic data. This
analysis also determines which imaging features are the
most predictive of the genomic characteristic. This is sig-
nificant because it allows for identifying imaging features
(or even defining new features) correlated with the
genomic characteristic previously shown to be related to
outcomes. These individual imaging features are likely to
be correlated with outcomes too, and they are good can-
didates for further analysis. Moreover, the constructed
model that predicts the genomic characteristic using
multiple imaging features can be directly applied to predict
outcomes. Conversely, if a relationship between a partic-
ular imaging feature and an outcome is known, then
finding a correlation between that feature and specific
genomic characteristics may identify the relationship of
those characteristics with that outcome.

One example of this approach is in study [19] where
the authors apply radiogenomic analysis to clear renal cell
carcinoma. In this paper, the authors identified several
imaging features which they correlated to mutations in
VHS (von Hippel-Lindau tumor suppressor), PBRMI,
SETD2 (SET domain containing 2), KDM5C, and
BAP1 genes that were previously indicated in relation to
clinically significant factors of advanced grade, stage, and
diminished survival prognosis. The authors found corre-
lations between some imaging features and the gene
mutations and through this discovery identified imaging
features that are potentially predictive of outcomes.

Another example is our own studies with colleagues
[13,14], where we found a correlation between computer-
extracted imaging features and intrinsic tumor subtypes in

breast cancer. Tumor molecular subtypes are defined us-
ing a set of tumor gene expression data: subtypes include
luminal A, luminal B, basal, and HER2 type. We
demonstrated that computer-assessed features that
describe tumor enhancement dynamics can distinguish
luminal B from other subtypes. The practical application
of this result is to identify luminal B patients and adapt
therapy accordingly. Furthermore, this result suggests that
tumor enhancement dynamics in MRI might be predic-
tive of outcomes.

Another approach to using radiogenomic analysis to
address the issue of limited data is the topic of a recent
article by Gevaert et al [17]. In this study, the authors had
2 sets of data on non—small-cell lung cancer. The first
contained imaging and gene expression data (no out-
comes); the second contained genomic and outcomes
data (no imaging). The authors used specific genomic
characteristics as input to a model that maps them into
imaging features. Multiple models were constructed for
the imaging features. Using the second data set, the au-
thors tested how well the imaging features, based on
specific genomic characteristics, predicted patient sur-
vival. The goal of the analysis, as stated by the authors,
was to identify imaging features that are predictive of
survival by evaluating their gene-based surrogates. They
showed that this approach can identify imaging features
that are related to survival outcomes.

Finally, beyond filling the gaps in knowledge, radio-
genomics discoveries have a more basic significance of
building a better understanding of the imaging repre-
sentations of various molecular phenotypes, uncovering
biological processes that are underlying phenotypes seen
in imaging [2] (ie, causal relationship between the two),
which could drive future discoveries in cancer research.

EXTRACTION OF IMAGING FEATURES

To conduct radiogenomic analysis, specific features have
to be extracted from images. Extraction can be done by
radiologists (or other qualified individuals), or with the
minor assistance of computer programs [11,19]. This is
typical in this early stage of research.

Lexicons

Reproducibility of results depends on use of a well-defined
lexicon to guide extraction. The lexicon must contain a set
of terms (features) that describe the tumor and its sur-
roundings, along with definitions of those terms. An
established example of a radiology lexicon is the ACR BI-
RADS®, which, for example, contains descriptions of

mammographic masses, such as “mass margin,” with its 5
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possible values: circumscribed, microlobulated, obscured,
indistinct, and spiculated. Limiting readers to choosing 1
of the previously specified answers allows for better com-
parison of features across readers and cases. Another
example of a radiology lexicon, developed specifically in
the context of radiogenomics and imaging biomarker
development is the VASARI [24] lexicon for the annota-
tion of brain tumors. Specific terms include: major axis
length, proportion of the enhancing tumor, and deep
white matter invasion. The development of lexicons in
radiology has recently become an area of substantial work
and interest in ontology [25]. The goal is to develop lex-
icons such as RadLex [26] that could lend themselves
naturally to radiogenomic analysis.

Although radiology lexicons facilitate the extraction of
easily usable features for radiogenomic analysis, manual
analysis of images has some disadvantages, most signifi-
cantly, interobserver variability. Although the lexicon
terms can be well defined, there are still often notable
differences between the assessments of individual features
by different radiologists. This introduces noise to radio-
genomic analysis or simply means that a particular cor-
relation of imaging features with genomics does not hold
when different radiologists annotate images. Related to
interobserver variability is the lack of precision when
human observers conduct quantitative assessment of
features such as mass volume, or volume of a specific part
of a tumor. Another disadvantage is the significant time
commitment required to assess individual cases. For
example, the VASARI lexicon contains more than 20
features, many of which require inspection of more than
one MRI sequence. This means that a skilled individual
will have to expand a good deal of time analyzing an
imaging examination.

Automatic and Semi-Automatic Feature
Extraction

Automatic or semi-automatic feature extraction alleviates
some of the issues of interobserver variability, limited
precision, and time commitment associated with manual
feature extraction. In automatic feature extraction, com-
puter vision algorithms are used to automatically segment
the abnormality and extract a variety of features. In semi-
automatic segmentation, a large part of the segmentation
and feature extraction is still carried out by a computer,
but a human reader is involved in the process. An
example is when a reader indicates roughly the bound-
aries of the tumor and a computer algorithm completes
segmentation and feature extraction. Involvement of
computer algorithms in the process allows for a more

precise and more consistent assessment of quantitative
features and extraction of a larger number of features,
some of which might not be easily perceptible by a hu-
man eye. Although embraced in the field of radiomics,
this approach to extraction of imaging features for radi-
ogenomic analysis has not reached its full potential.

CONCLUSIONS AND DISCUSSION

The main limitation of radiogenomics is related to the
fact that if strong imaging and outcomes data are
available, and the prediction of outcomes is the primary
goal, the radiogenomic analysis may not bring an
additional contribution to the analysis. In such cases,
imaging features can be directly correlated with the
outcome of interest. However, in the most common
situation, where the data is limited, radiogenomic
analysis can be used, along with previously generated
knowledge to identify imaging features that might be
related to outcomes. Furthermore, elucidating the rela-
tionship between imaging and genomics will lead to a
better understanding of cancer in general and may lead
to improved treatment protocols. Finally, radiogenomic
findings could guide the collection of future datasets by
identifying imaging or genomics with a high potential to
predict outcomes.

In this article, I focused on radiogenomic analysis
directed at finding a relationship between genomics and
imaging. However, a broader understanding of the term
is sometimes applied to include any analysis that involves
genomics and imaging. Various research directions within
this broader theme and related to it are emerging and
gaining popularity, some of which with very high sig-
nificance. A very promising research direction is using
computer- and radiologist-extracted features to directly
predict patient outcomes [11], [27], [28]. Another in-
volves combining imaging and genomic markers. Still
another is traditional imaging-based surveillance of pa-
tients with higher disease risk determined by their ge-
notype, for example higher breast cancer risk determined
by BRCAI or BRCA2 mutations.

A significant opportunity related to radiogenomics lies
in the development of new statistical methodologies for
the construction and evaluation of radiogenomic models.
New methodology may instruct us on how to better
leverage radiogenomic models in the development of
clinically useful tools. As the discipline of radiogenomics
matures, the significance of radiogenomic analysis will
become clearer and new applications will undoubtedly
emerge.
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TAKE-HOME POINTS

Radiogenomics investigates the relationship between
disease genomic characteristics and its radiology
phenotypes.

In some scenarios, direct prediction of outcomes
using imaging features might be preferable to radi-
ogenomic analysis.

Radiogenomics will play a significant role in cancer
research as it creates a new avenue of generating
important knowledge from limited data.
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