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Abstract

“Radiomics” refers to the extraction and analysis of large amounts of advanced quantitative imaging features with high throughput from
medical images obtained with computed tomography, positron emission tomography or magnetic resonance imaging. Importantly, these data
are designed to be extracted from standard-of-care images, leading to a very large potential subject pool. Radiomics data are in a mineable
form that can be used to build descriptive and predictive models relating image features to phenotypes or gene–protein signatures. The core
hypothesis of radiomics is that these models, which can include biological or medical data, can provide valuable diagnostic, prognostic or
predictive information. The radiomics enterprise can be divided into distinct processes, each with its own challenges that need to be
overcome: (a) image acquisition and reconstruction, (b) image segmentation and rendering, (c) feature extraction and feature qualification and
(d) databases and data sharing for eventual (e) ad hoc informatics analyses. Each of these individual processes poses unique challenges. For
example, optimum protocols for image acquisition and reconstruction have to be identified and harmonized. Also, segmentations have to be
robust and involve minimal operator input. Features have to be generated that robustly reflect the complexity of the individual volumes, but
cannot be overly complex or redundant. Furthermore, informatics databases that allow incorporation of image features and image
annotations, along with medical and genetic data, have to be generated. Finally, the statistical approaches to analyze these data have to be
optimized, as radiomics is not a mature field of study. Each of these processes will be discussed in turn, as well as some of their unique
challenges and proposed approaches to solve them. The focus of this article will be on images of non-small-cell lung cancer.
© 2012 Elsevier Inc. All rights reserved.
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1. Introduction

“Radiomics” involves the high-throughput extraction of
quantitative imaging features with the intent of creating
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mineable databases from radiological images [1]. It is
proposed that such profound analyses and mining of image
feature data will reveal quantitative predictive or prognostic
associations between images and medical outcomes. In
cancer, current radiological practice is generally qualitative,
e.g., “a peripherally enhancing spiculated mass in the lower
left lobe.” When quantitative, measurements are commonly
limited to dimensional measurements of tumor size via one-
dimensional (Response Evaluation Criteria In Solid Tumors
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Fig. 1. The process and challenges in radiomics.
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[RECIST]) or two-dimensional (2D) (World Health Organi-
zation) long-axis measures [2]. These measures do not reflect
the complexity of tumor morphology or behavior, nor, in
many cases, are changes in these measures predictive of
therapeutic benefit [3]. When additional quantitative mea-
sures are obtained, they generally average values over an
entire region of interest (ROI).

There are efforts to develop a standardized lexicon for
the description of such lesions [4,5] and to include these
descriptors via annotated image markup into quantitative,
mineable data [6,7]. However, such approaches do not
completely cover the range of quantitative features that can
be extracted from images, such as texture, shape or margin
gradients. In focused studies, texture features have been
shown to provide significantly higher prognostic power
than ROI-based methods [8–11]. The modern rebirth of
radiomics (or radiogenomics) was articulated in two papers
by Kuo and colleagues. Following a complete manual
extraction of numerous (N100) image features, a subset of
14 features was able to predict 80% of the gene expression
pattern in hepatocellular carcinoma using computed
tomographic (CT) images [12]. A similar extraction of
features from contrast-enhanced magnetic resonance im-
ages (MRI) of glioblastoma was able to predict immuno-
histochemically identified protein expression patterns [13].
Although paradigm shifting, these analyses were performed
manually, and the studies were consequently underpow-
ered. In the current iteration of radiomics, image features
have to be extracted automatically and with high
throughput, putting a high premium on novel machine
learning algorithm development.

The goal of radiomics is to convert images into
mineable data, with high fidelity and high throughput.
The radiomics enterprise can be divided into five processes
with definable inputs and outputs, each with its own
challenges that need to be overcome: (a) image acquisition
and reconstruction, (b) image segmentation and rendering,
(c) feature extraction and feature qualification, (d) data-
bases and data sharing and (e) ad hoc informatics analyses.
Each of these steps must be developed de novo and, as
such, poses discrete challenges that have to be met (Fig. 1).
For example, optimum protocols for image acquisition and
reconstruction have to be identified and harmonized.
Segmentations have to be robust and involve minimal
operator input. Features have to be generated that robustly
reflect the complexity of the individual volumes, but cannot
be overly complex or redundant. Informatics databases that
allow for incorporation of image features and image
annotations, along with medical and genetic data, have to
be generated. Finally, the statistical approaches to analyze
these data have to be optimized, as radiomics is not a
mature field of study. Variation in results may come from
variations in any of these individual processes. Thus, after
optimization, another level of challenge is to harmonize and
standardize the entire process, while still allowing for
improvement and process evolution.
2. Image acquisition and reconstruction challenges

In routine clinical image acquisition, there is wide
variation in imaging parameters such as image resolution
(pixel size or matrix size and slice thickness), washout period
in the case of positron emission tomography (PET) imaging,
patient position, and the variations introduced by different
reconstruction algorithms and slice thicknesses, which are
different for each scanner vendor. Even this simple set of
imaging issues can create difficulty in comparing results
obtained across institutions with different scanners and
patient populations. In addition, it is a challenge to identify
and curate a large number of image data examples with
similar clinical parameters such as disease stage.
2.1. Image acquisition and reconstruction

2.1.1. CT
Of all the imaging modalities, CT appears to be the most

straightforward and perhaps the easiest to compare across



Fig. 2. The CT phantom. This phantom has several regions to test image
quality such as low contrast detectability and spatial resolution.

Fig. 3. Effect of two different reconstruction algorithms on same raw CT da
the same raw data reconstructed using a higher contrast algorithm. To app
vertical lines are shown (C and D, respectively). Even the average HUs in
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institutions and vendors. Standard phantoms such as the CT
phantom have become the standard of the industry (Fig. 2).
The phantom is based on the American Association of
Physicists in Medicine (Task Group Report-1) and has
several sections to evaluate imaging performance. There are
sections (a) to evaluate the true slice thickness and variation
ta (A an
reciate t
the tum
of Hounsfield units (HUs) with electron density, (b) to look
at the ability to visualize small variations in density (low
contract delectability) and another (c) for detecting special
resolution, high contrast detectability, and a region of
uniform medium to examine variation in HUs. The imaging
performance of a scanner will depend also on the imaging
technique. As the slice thickness is reduced, the photon
statistics within a slice are reduced unless the mA or kVp is
increased. The axial field of view will also change the voxel
size within a slice, and the reconstruction matrix size can also
be varied from 512×512 up to 1024×1024, which also
changes the voxel size.

Pitch is a parameter that is frequently optimized by each
scanner manufacturer so that only certain pitches are allowed
for an image acquisition. These pitches are unique to each
scanner, and as a result, comparing noise between scanners
can only be performed by investigating images acquired
using axial, as opposed to helical or spiral, acquisitions.
However, helical image acquisitions are used most often in a
clinical setting. HUs can also vary with reconstruction
algorithm. A single acquisition of a thoracic tumor is shown
in Fig. 3A and B using two different reconstruction
algorithms. While this is a single data acquisition, there are
significant variations in tumor texture between the two
images. The variation in HUs or texture along the vertical
d B) where panel (A) shows a “standard smooth image” and panel (B) shows
he effect of these reconstruction algorithms, the profiles (in HUs) along the
or are different for the different algorithms.

image of Fig.�2
image of Fig.�3
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paths in Fig. 3A and 3B is shown on the graphs (Fig. 3C and
3D, respectively).

For clinical trials, significant effort will be required to
match reconstruction protocols and image noise between
scanners. While the CAT phantom is a reasonable initial step
to compare different scanners, more sophisticated phantoms
may be required to match the effects of reconstruction
algorithms. Although there can be some variation, different
vendors have algorithms that are similar enough to be
quantitatively comparable. Indeed, the focus of our approach
is to use features with (a) sufficient dynamic range between
patients, (b) intrapatient reproducibility and (c) insensitivity
to image acquisition and reconstructions protocol.

2.1.2. PET–CT
Quantitative imaging with 2-deoxy-2-[18F]fluoro-D-glu-

cose (18-FDG) PET scans is a challenge because it not only
requires calibration of the scanner and standardization of the
scan protocol but also requires the patient and staff to adhere
to a strict patient protocol [14,15]. From a technical
viewpoint, the main challenges are the dose calibration and
the metabolic volume or volume-of-interest (VOI) recon-
struction that depends heavily on the scan protocol and
source-to-background ratio [16]. Before a scanner is used in
a quantitative manner, interinstitution cross-calibration and
quality control such as proposed recently [14] are necessary
(Fig. 4). From a patient protocol perspective, administration
issues (residual activity in syringe, paravenous administra-
tion), blood glucose level [17], uptake period, breathing,
patient comfort and inflammation all influence the quanti-
tation of the standardized uptake value (SUV) of 18-FDG.
Complying with a strict protocol such as has been proposed
by the Society of Nuclear Medicine and the European
Association of Nuclear Medicine is another prerequisite to
quantitative PET imaging.

2.1.3. MRI
The signal intensities in MR images arise from a complex

interplay of inherent properties of the tissue, such as
Fig. 4. Metabolic volume calibration; PET phantom with differently sized
sphere sources filled with FDG activity within a background activity. By
varying the source-to-background-activity ratio, the capability of the PET
scanner to reconstruct the correct sphere volume can be quantified.
relaxation times and acquisition parameters. Therefore, it is
difficult to derive information about the physical properties
of tissue from MR image signal intensities alone. This is in
contrast to CT images where signal intensity can be
correlated with the density of the tissue. However, certain
techniques, such as diffusion-weighted imaging (DWI) and
dynamic contrast-enhanced (DCE) MRI, allow assessment
of physiological properties of tissue. For example, the
apparent water diffusion coefficient determined using DWI
varies inversely with tissue cellularity. DCE can be used to
extract vascular flow, permeability and volume fractions.
Although both of these techniques provide quantitative
information, their reliability and reproducibility remain
dependent on acquisition parameters and conditions. DW
images can be of low spatial resolution and are sensitive to
motion and magnetic susceptibility, and the quantitation is
dependent on k-space trajectory, gradient strengths and b-
values. DWI has been proposed as a cancer imaging
biomarker, and there are efforts to develop quality control
protocols [18,19]. Results of the DCE MRI depend on the
contrast agent dose, method of administration, pulse
sequence used, field strength of the scanner and the analysis
method used [20–22]. Different investigators use different
methods to convert DCE MRI signal intensities to contrast
agent concentration [23–25]. Recently, a group of the
Radiological Society of North America known as the
Quantitative Imaging Biomarker Alliance initiated a stan-
dardization of the protocol for DCE MRI [26].

Ideally, MR images will all have the same field of view,
field strength and slice thickness. Where possible, e.g., brain
tumors, multiple sequences with contrast enhancement such as
T1-weighted, T2-weighted and Fluid attenuated inversion
recovery (FLAIR) can be very useful. InMR images of human
brain tumors, radiomics has the potential to play an important
role in categorizing the tumor. It is possible to view the tumor
as having different regions using image features, including
texture, wavelets, etc. For example, there will be areas of
enhancement and potentially necrosis. The tumor bed can be
extracted as an expanded region around the postcontrast T-
weighted image, for example. Unsupervised clustering can be
used to group the data into regions using data from multiple
registered sequences. The extraction of image features from
those regions, including such things as their locationwithin the
tumor bed, can allow for new types of tumor characterization.
It has been observed that enhancement in individual tumors
can be heterogeneous and that analysis of this heterogeneity
has prognostic value [9]. The location and characteristics of
such regions have the potential to provide new insights into
tumor prognosis and howwell it is likely to respond to targeted
treatments. The opportunity to acquire images over time will
allow for comparisons and contrasts between regions.

2.2. Need for large image data sets

The acquisition of images is time consuming and costly.
Because of this, our approach is to focus on standard-of-care

image of Fig.�4
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images, with the expectation that this will generate large data
sets and have more clinical impact compared to more
controlled and dedicated prospective image acquisitions.
Radiomics requires large image data sets with the expecta-
tion that large numbers may be able to overcome some of the
heterogeneities inherent in clinical imaging. Image data
sharing across sites will be important to make large data sets
available for radiomics analysis.

Various online repositories are available that host image
data. The image data contains the image series for each
patient and each series containing image slices. One of the
largest online CT image repositories is the National
Biomedical Image Archive (NBIA) hosted by the National
Cancer Institute. Apart from the images, image annotations
and outcomes data are also important components to share.
There should be a uniform image annotation format which
could be read by other users to compare with their own
segmentations. This format should support multiple annota-
tions from alternative image analysis algorithms to support
higher-level processing and prediction. The image data are
linked to the metadata in DICOM-format images; the
metadata contain information about the acquisition, scanner
and other details of the images. Currently available clinical
image data which may be used for radiomics study includes
the Lung Image Database Consortium, the Reference Image
Database to Evaluate Response to therapy in lung cancer and
others [27,28]. Radiomics analyses require refined image
data based on image characteristics (resolution, reconstruc-
tion and acquisition parameters) and clinical parameters
(stage of disease, type of disease and outcomes).

A major use of the information extracted from CT scan
images and clinical data is the development of automated
prediction models. A challenge in modeling any classifier is
making it robust enough for clinical use. Development of
robust models requires a sufficiently robust training set. The
lack of standardization in imaging makes it difficult to
Fig. 5. The variation in slice thickness (A) and p
determine the effectiveness of image features being devel-
oped and prediction models built to work on those feature
values. A snapshot of the extent of the lack of standardiza-
tion in image acquisition and reconstruction can be seen in
Fig. 5. This figure represents the variation in slice thickness
and pixel size (in mm) for a data set of CT scan images from
74 patients used by Basu et al. [29] to develop prediction
models for classifying non-small-cell lung cancer (NSCLC)
tumor types using image features. This variation affects the
information being extracted by image feature algorithms,
which in turn affects classifier performance. In this scenario,
without the presence of a large standardized repository,
setting performance benchmarks for effectiveness of image
feature algorithms and classifier models built upon those
features becomes difficult.
3. Segmentation challenges

Segmentation of images into VOIs such as tumor, normal
tissue and other anatomical structures is a crucial step for
subsequent informatics analyses. Manual segmentation by
expert readers is often treated as ground truth. However, it
suffers from high interreader variability and is labor
intensive; thus, it is not feasible for radiomics analysis
requiring very large data sets. Many automatic and
semiautomatic segmentation methods have been developed
across various image modalities like CT, PET and MRI and
also for different anatomical regions like the brain, breast,
lung, liver, etc. Though different image modalities and organ
systems require ad hoc segmentation approaches, all share a
few common requirements. The segmentation method
should be as automatic as possible with minimum operator
interaction, should be time efficient, and should provide
accurate and reproducible boundaries. Most common
segmentation algorithms used for medical images include
ixel size (B) for a data set of 74 patients.

image of Fig.�5
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region-growing-based methods (click-and-grow), level sets
and graph cuts. Region-growing methods require an operator
to select a seed point within the VOI. While these methods
are most suitable for relatively homogenous regions, they
can be user dependent and often introduce significant
interobserver variation in the segmentations. We describe
here some major challenges encountered while developing
segmentation methods for NSCLC.
3.1. Challenges in segmentation of lung tumors

The segmentation of CT thorax images usually requires
segmentation of lung fields for successive segmentation of
lung nodules. Right and left lungs should be automatically
segmented, which may serve as a preprocessing step. This
has been achieved relatively successfully; however, in cases
where high-intensity tumors are attached to the pleural wall
or mediastinum, automatic segmentation often underper-
forms (Fig. 6). In our experience, while using rule-based
methods, automatic segmentations often failed in such cases,
as evidenced by extension of lung boundaries into the
mediastinum or heart.

A majority of Stage I and Stage II NSCLC nodules
present as homogenous, high-intensity lesions on a back-
ground of low-intensity lung parenchyma. These can be
segmented with high reproducibility and accuracy. However,
partially solid, ground glass opacities, nodules attached to
vessels and nodules attached to the pleural wall remain
difficult to segment automatically and show low reproduc-
ibility, especially for Stage III and Stage IV disease. Work is
in progress to improve the automatic segmentation and
reproducibility in these cases.

A possible solution may come from “crowd-sourcing” the
solutions via “segmentation challenges”: public databases
for comparing segmentation results via standard metrics.
However, there are intellectual property issues that arise
from this type of approach. The patentability of an invention
stemming from a public database is complicated matter that
depends upon a number of factors, including inventorship
Fig. 6. Representative examples of lung tumors attached to anatomical structures like
and the source of funding. In the context of a crowd-sourced
development, it may be difficult to identify the “inventors.” It
should be noted, however, that there are multiple forms of
patent protection, e.g., method patents protecting a particular
way of achieving a given result (e.g., an algorithm) or patents
covering the particular use of a method. The potential for
commercial development may depend only on the resource-
fulness of inventors, and the type and scope of the potential
patent granted.

Manually traced segmentations are often used as gold
standard or ground truth [30] against which the accuracy of
the automatic segmentation is evaluated. However, manually
traced boundaries themselves suffer from significant inter-
reader bias, and the reproducibility is low. In a large image
data set and especially with slices thickness 3.0 mm or less
where number of slices may be higher than 200 per patient,
the option of tracing manual boundaries is time prohibitive.
Therefore, it is important to have a segmentation algorithm
which is automatic and reproducible. The reproducibility of a
manual or automatic segmentation of tumors is a known
issue. Inter- and intrareader reproducibility significantly
varies. As discussed earlier, in radiomics, sources of
variations come from acquisition of images, segmentation
and analysis, and should be minimized.

3.2. Segmentation algorithms

Many popular segmentation algorithms have been applied
in medical imaging studies within the last 20 years; the most
popular ones include region-growing methods [31,32], level
set methods [33–38], graph cut methods [39–44], active
contours (snake) algorithms [45–49] and semiautomatic
segmentations such as livewires [50–53], etc.

Region-growing algorithms are rapid, but undesired
“regions” will be produced if the image contains too much
noise. The level set method was initially proposed by Osher
and Sethian in 1988 to track moving interfaces, and it was
subsequently applied across various imaging applications in
the late 1990s [38]. By representing a contour as the zero
pleural wall, mediastinum or heart that are difficult to segment automatically
.

image of Fig.�6
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level set of a higher dimensional function (level set function),
level set method formulates the motion of the contour as the
evolution of the level set function. The graph cut method is
relatively new in the area of image segmentation, which
constructs an image-based graph and achieves a globally
optimal solution of energy minimization functions. Since
graph cut algorithms try to identify a global optimum, it is
computationally expensive. Another problem for graph cut is
the oversegmentation.

The active contours (snake) algorithm works like a
stretched elastic band being released. The start points are
defined around the object which needs to be extracted. The
points then move through an iterative process to a point with
the lowest energy function value. The active contours
algorithm requires a good initialization; it is also sensitive
to noise, which may lead the snake to undesired locations.
The livewire (intelligent scissor) method is motivated by the
general paradigm of the active contour algorithm: it converts
the segmentation problem into an optimal graph search
problem via local active contour analysis, and its cost
function is minimized by using dynamic programming. A
problem with the livewire approach is that it is semiauto-
matic, requiring multiple human interactions.

There is no universal segmentation algorithm that can
work for all medical image applications. With proper
parameters settings, each segmentation could segment the
region of interest automatically or semiautomatically.
However, the result of each segmentation will be quite
different, and even for the same algorithm performed
multiple times with different initializations, results may be
variable. Hence, it is very important to develop agreed-upon
metrics to evaluate segmentation algorithms.

3.3. Performance metrics

Accuracy, reproducibility and consistency are three of
the most important factors to evaluate a segmentation
algorithm for medical images. However, conventional
evaluation metrics normally utilize the manual segmenta-
tion provided by radiologists, which is subjective, error
prone and time consuming. In the majority of cases, manual
segmentation tends to overestimate the lesion volume to
ensure the entire lesion is identified [54], and the process is
highly variable [55,56]. In other words, "ground truth"
segmentation does not exist. Hence, we believe that
reproducibility and consistency are more important than
accuracy. That is, for a given a tumor, an algorithm must
reproducibly provide the same segmentation results that are
user independent.

There is no consensus on the metrics for evaluation of
image segmentation algorithms. The metric should address
the particular characteristic of the algorithm to be compared,
as automated as possible, quantitative and easily computed.
Many metrics have been used, like volume, center of volume
and maximum surface distance, to compare characteristics
like robustness and accuracy [57,58].
The Jaccard Similarity Index (SI) is the measure of the
overlap of two or more volumes and is calculated as the ratio
of voxel-wise intersection to union of target and reference
images [59]:

SIab =
Sa∩Sb
Sa∪Sb

; ð1Þ

where Sa and Sb are segmentations of target and reference
images, respectively. An SI of 1.0 represents complete
overlap (volume, location and shape), and 0 means no
overlap. In our current project, we have calculated SI between
each pair of 20 independent computer-generated segmen-
tations of individual lung tumors and report the average SI
for each lesion, calculated using following equation:

AverageSIi =
1
20

∑
20

m=1

1
19

∑
20

n≠m; n=1
SIim ;in

" #
; ð2Þ

where i∈[1,#ofcases] is the case index, SIim,in is from Eq.
(1). For manual segmentations, the average SI was 0.73. For
automated segmentations, the average SI was 0.93.
4. Feature extraction and qualification

Once tumor regions are defined, imaging features can be
extracted. These features describe characteristics of the
tumor intensity histogram (e.g., high or low contrast), tumor
shape (e.g., round or spiculated), texture patterns (e.g.,
homogeneous or heterogeneous), as well as descriptors of
tumor location and relations with the surrounding tissues
(e.g., near the heart).

4.1. Tumor intensity histogram

Tumor intensity histogram-based features reduce the
three-dimensional (3D) data of a tumor volume into a single
histogram. This histogram describes the fractional volume
for a selected structure for the range of voxel values (e.g.,
Hounsfield units for a CT scan or SUVs for an FDG-PET
scan). From this histogram, common statistics can be
calculated (e.g., mean, median, min, max, range, skewness,
kurtosis), but also more complex values, such as metabolic
volume above an absolute SUV of 5 or the fraction of high-
density tissue measured with CT [60,61]. Such threshold
values have shown promise in developing classifier models,
and optimum thresholds for a given task can be identified
with receiver operator characteristic (ROC) analyses. As the
outcome (e.g., time to recurrence) to which the threshold is
being compared can also have a variable threshold, 3D ROC
approaches have been developed to represent a surface to
optimize both the biomarker and the outcome thresholds.
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4.2. Shape-based features

Quantitative features describing the geometric shape of a
tumor can also be extracted from the 3D surface of the
rendered volumes [62]. For example, the total volume or
surface area can be an important characteristic. Also, the
surface-to-volume ratio can be determined, where a
speculated tumor has a higher value than a round tumor
with a similar volume. Furthermore, descriptors of tumor
compactness and shape (sphericity, etc.) can also be
calculated [63].

4.3. Texture-based features

Second-order statistics or co-occurrence matrix features
can be used for texture classification [64–66] and are widely
applied in medical pattern recognition tasks [67–71]. The
basis of the co-occurrence features lies on the second-order
joint conditional probability density function P(i,j;a,d) of a
given texture image. The elements (i,j) of the co-occurrence
matrix for the structure of interest represent the number of
times that intensity levels i and j occur in two voxels
separated by the distance (d) in the direction (a). Here, a
matrix can be selected to cover the 26-connected directions
of neighboring voxels in 3D space. The matrix size is
dependent on the intensity levels within the 3D structure.
Subsequently, from this conditional probability density
function, features can be extracted, e.g., describing autocor-
relation, contrast, correlation, cluster prominence, cluster
shade, cluster tendency, dissimilarity, energy, homogeneity,
maximum probability, sum of squares, sum average, sum
variance, sum entropy or difference entropy, etc. Further-
more, gray level run length features, derived from run length
matrices and using run length metrics as proposed by
Galloway [66], can be extracted. A gray level run is the
length, in number of pixels, of consecutive pixels that have
the same gray level value. From the gray level run length
matrix, features can be extracted describing short and long
run emphasis, gray level nonuniformity, run length non-
uniformity, run percentage, low gray level run emphasis and
high gray level run emphasis. As expected, such analyses can
generate hundreds of variables, some of which may be
redundant. Thus, it is important to assess the redundancy of
these data using covariance.

4.4. Feature qualification

As described above, a dauntingly large number of image
features may be computed. However, all these extracted
features may not be useful for a particular task. In addition,
the numbers of extracted features can be higher than the
number of samples in a study, reducing power and increasing
the probability of overfitting the data. Therefore, dimen-
sionality reduction and selection of task-specific features for
best performance are necessary steps. Different feature
selection methods can be used for this purpose and may
exploit machine learning or statistical approaches [72–76].
Dimensionality reduction can also be achieved by combin-
ing or transforming the original features to obtain a new set
of features by using methods like principal component
analysis (PCA) [73]. In addition to feature selection for
informative and nonredundant features, high reproducibility
of the features is important in the development of clinical
biomarkers, which requires the availability of a test–retest
data set.

To reduce the dimensionality of our feature space, we have
chosen to combine different ad hoc methods that are
agnostically applied to the behavior of the features them-
selves prior to evaluating their ability to develop predictive
models. Thus, we evaluated features to fulfill three main
requirements: highly reproducible, informative and nonre-
dundant. We have applied three methods in serial manner,
where the methods were applied successively to select
features. The resulting features of one method were used as
input to the next. First, using a test–retest lung CT image data
set, highly reproducible features were selected based on
concordance correlation coefficient, CCC, with a cutoff of
0.85 for high reproducibility. Subsequently, the CCC-
prioritized features were analyzed for dynamic range,
calculated as the ratio of scalar biological range to the test–
retest absolute difference. Features showing high dynamic
range were considered to be informative. A dynamic range of,
e.g., 100 can be arbitrarily used as a cutoff, although features
with lower dynamic range may also be informative. Finally,
the redundancy in the features, selected after passing through
reproducibility and dynamic range requirements, can be
reduced by identifying highly correlated features based on
correlation coefficients across all samples. Correlation
coefficients greater than 0.95 are considered to be highly
redundant and thus can be combined into a single descriptor.
In a test set, the serial application of these three methods was
able to reduce a set of 327 quantitative features to 39 that were
reproducible, informative and not redundant. More features
could be added by relaxing the dynamic range threshold,
which was arbitrarily set at 100. These selected features can
also be used to develop classifier models based on machine
learning algorithms to improve the performance [29].
5. Databases and data sharing

5.1. Deidentification

To follow the principle of providing the minimum amount
of confidential information (i.e., patient identifiers) necessary
to accommodate downstream analysis of imaging data, raw
DICOM image data can be stripped of identified headers and
assigned a deidentified number. Maintaining deidentified
images and clinical data is an important patient privacy
safeguard [77]. In the context of DICOM images, Supple-
ment 142 from the DICOM Standards Committee provides
guidance in the process of deidentifying images, including
pixel-level data. Software packages, including NBIA [78],
implement these standards. Likewise, molecular data can be
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deidentified using a similar approach. However, identifiers
must be linked between imaging, molecular data and clinical
data in order to build classifier models. This can be achieved
through institutional review board approval or through the
more expedient use of an “honest broker.” The clinical data
are deidentified by removing personal identifiers (including
medical record numbers, patient names, social security
numbers and addresses) and providing calculated interval-
based survival times instead of actual dates which are also
personal identifiers. The approach taken within our radiomics
effort is to avoid the use of identified imaging or clinical data
unless specifically required. This also facilitates the sharing
of data within and across institutions since the deidentifica-
tion occurs at the creation of the data set.

5.2. RDB: an integrated radiomics database

The goal of radiomics is to link the image features to
phenotypes or molecular signatures, and this requires
development of an integrated database wherein the images
and the extracted features are linked to clinical and molecular
data (Fig. 7). The use of such a database must also be
integrated in the workflow starting from image retrieval and
calculation of image features up to the joint analysis of image
features, clinical data and molecular data. Furthermore, as
part of a larger network of quantitative imaging sites, we
must also be able to exchange data according to an evolving
set of standards. Below are some of the challenges discussed
in more detail.

5.2.1. Image storage
Using clinical Picture Archiving and Communications

Systems (PACS) systems is not amenable for research
projects. First, the clinical system is used for operational
Fig. 7. Architecture of the proposed RDB. High-level database schema capturing the
clinical (blue) and molecular (green) data. Each box represents a set of normalized
images series, using multiple segmentations generating different image features.
purposes, and introducing additional Input/Output (I/O)
load and increased storage could negatively impact clinical
care. Second, the requirements between research and
clinical systems are different and often incompatible. The
research image storage server needs to be fully integrated
with the downstream data, including molecular and clinical
research data. If the imported DICOM images contain
Medical Records Numbers, these need to be linked to other
clinical data that are stored on other systems, and then the
DICOM headers will be deidentified (e.g., patient name).
This allows for transparent merging of clinical data across
systems. In a research setting, some of the analyses or
imaging feature generation software packages also need
direct access to the DICOM images. Having direct access
to the file system where the images are stored makes it
possible to create project folders, with all images selected
for a specific project, which are specific for the software
used for the image feature extraction. In our instance, we
are using open-source Clear Canvas as a research PACS
system, although others are available.

5.2.2. Integration to create a simple work stream
In a research setting, it is common that several different

software packages are used for image analysis (e.g., 3D-
Slicer, Definiens Developer, Medical Imaging Toolkit
[MITK]) and statistical analysis (e.g., R, SAS, Stata). Many
of these software packages may be developed by industry, in-
house or by other academic groups. This requires that the
RDB import data from analysis projects using these software
packages in a simple way without sacrificing data integrity.
This can be achieved by having the RDB application directly
reading working directories and/or results files from the
software used. If unique tags have been used when creating
following data types: image types (orange), image features (purple), patient
tables. This schema supports multiple tumors for one patient, with multiple
/

image of Fig.�7
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image filenames, it is easy to link these data with the right
image and downstream clinical and molecular data.

5.2.3. Integration of clinical and molecular data
Integrating data across systems is always a challenge in

large settings. The RDB application needs to integrate the
data from several systems, such as outcomes and demo-
graphic data (Cancer Registry), clinical trial data (e.g.,
Oncore) or other systems that store clinical and patient
information. The manual input of such data should be kept to
a minimum through the use of an extract, transform and load
tool that captures the physical metadata information to
maintain data provenance and minimizes the risk of human
errors. The use of a well-developed data dictionary with
extensive metadata is essential when integrating data across
systems. Therefore, a new data warehouse model that
incorporates the metadata layer into the data model,
including a comprehensive data dictionary along with
calculated data quality attributes such as completeness,
accuracy and consistency, has been utilized for the radiomics
project [79]. This new data structure was specifically
designed to provide easy semantic integration of internal
data from multiple heterogeneous source systems as well as
provide an easy solution for harmonizing clinical, molecular
and imaging data with external members of the quantitative
imaging network. Along this path, it has also been important
to ensure that the RDB structure and semantics are
compatible with those from other institutions and (inter)
national databases.

5.2.4. Reporting and exporting the data
Advanced statistical analyses of radiomics data require

tools such as R, SAS, or MATLAB. The application must be
able to export data in such a way that it minimizes any need
for processing of data outside the RDB application and thus
keeping the data aligned and correct. Longitudinal studies
add an extra layer of complexity with the potential need of
reporting changes over time, such as imaging features or
clinical parameters. A flexible selection of which data should
be included and in which format the data should be exported
is important.
6. Statistical and radioinformatics analysis

Analysis within radiomics must evolve appropriate
approaches for identifying reliable, reproducible findings
that could potentially be employed within a clinical context.
Applying the existing bioinformatics “toolbox” to radio-
mics data is an efficient first step since it eliminates the
necessity to develop new analytical methods and leverages
accepted and validated methodologies. Radiomics-specific
analysis issues will exist, as in any field; therefore, an
important step in achieving consensus on appropriate
analysis and evaluation techniques requires availability of
real-world data. The goals of the Quantitative Imaging
Network (QIN) in providing infrastructure to effectively
share radiomics data will enable the further development of
methodology and best practices within the field.

Some of the more significant methods or developments
from the bioinformatics toolbox include (a) multiple testing
issues, (b) supervised and unsupervised analysis and (c)
validating biomarker classifiers. Another important analyt-
ical consideration is the incorporation of clinical and patient
risk factor data since they may have a causal effect or
correlation with image features or they may confound
statistical associations. Thus, synergizing biostatistics,
epidemiology and bioinformatics approaches is necessary
to build robust, parsimonious and clinically relevant
predictive models relating image features to phenotypes/
end points or gene–protein signatures.

6.1. High-dimensional biomarker discovery and validation

The field of high-dimensional biomarker discovery and
validation has evolved rapidly over the past decade since
some of the earliest microarray-based results were reported
[80]. In particular, these advances have prompted many
studies to address clinical prediction (e.g., prognosis,
response to therapy). Many of the lessons learned and
tools developed within this field are immediately relevant to
the analysis of radiomics data sets.

6.1.1. Multiple testing
Many of the significant developments within the field of

so-called “large-p, small-n” data analysis problems are
robust methods for accommodating multiple testing issues.
In many data sets in these areas, it is not unusual to test the
significance of tens of thousands of variables (p=50,000)
using a univariate test (e.g., a t test) across 50 samples (n=
50). Any single test may have a low expected false-
positive rate; however, the cumulative effect of many
repeated tests guarantees that many statistically significant
findings are due to random chance. The false positives
(type I errors in statistics) are controlled using an
appropriate P value threshold (e.g., Pb.05) in the case of
single test. However, performing 50,000 tests creates
serious concerns over the accumulated type I error from
such an experiment. This multiple testing problem has
been addressed in statistics in many ways; however, the
most familiar, and conservative, Bonferroni corrections
severely limit the power of the test in the 50,000-test
experiments [81]. False discovery rates [82–84] have been
developed to provide more reasonable error estimates.
Incorporating this type of correction is an essential step,
even in discovery-oriented analysis, to give researchers
reasonable guidance on the validity of their discoveries.

6.1.2. Unsupervised and supervised data analysis
Depending on the type of analysis, there are both

unsupervised and supervised analysis options available. The
distinction in these approaches is that unsupervised analysis
does not use any outcome variable, but rather provides
summary information and/or graphical representations of



1244 V. Kumar et al. / Magnetic Resonance Imaging 30 (2012) 1234–1248
the data. Supervised analysis, in contrast, creates models
that attempt to separate or predict the data with respect to
an outcome or phenotype (for instance, patient outcome
or response).

Clustering is the grouping of like data [85] and is one
of the most common unsupervised analysis approaches.
There are many different types of clustering, although
several general types are commonly used within bioinfor-
matics approaches. Hierarchical clustering, or the assign-
ment of examples into clusters at different levels of
similarity into a hierarchy of clusters, is the most common
type. Similarity is based on correlation (or Euclidean
distance) between individual examples or clusters. Most
significantly, the data from this type of analysis can be
graphically represented using the cluster heat map. Fig. 8
represents a heat map of NSCLC patients with quantitative
imaging features extracted. The heat map is an intuitive
display that simultaneously reveals row and column
hierarchical cluster structure in a data matrix that consists
of a rectangular tiling with each tile shaded on a color
scale to represent the value of the corresponding element
of the data matrix. This cluster heat map is a synthesis of
various graphic displays developed by statisticians over
more than a century [86].

Supervised analysis consists of building a mathematical
model of an outcome or response variable. The breadth of
techniques available is remarkable and spans statistics and
data mining/machine learning. Approaches we have used
include neural networks [87], linear regression [87] and
Cox proportional hazards regression [88]. Some essential
criteria in selecting an approach include the stability and
reproducibility of the model. Neural networks or ensemble
methods, if they involve an element of randomness, can
lead to results that cannot be replicated without the same
random sequences generated. In light of many of the
difficulties surrounding genomic-based models, understand-
ability of the generated models is an important consideration.
For clinical validation, alternate assays or measurements
may be required, and thus, an understanding of the way in
which variables are combined in a decision model is
necessary for translation. In the case of NSCLC imaging,
methods that generate understandable decisions can be
important for combining this information with existing
advances in genotyping patients (e.g., EGFR mutation,
EML4-ALK rearrangements).

Multivariate data analysis tools such as PCA [89] and
partial least squares projection to latent structures [90] (PLS)
can be used to analyze quantitative features together with
additional data. PCA allows for an unsupervised analysis of
the data where important features can be extracted and
visualized. PCA extracts the underlying structures, principal
components, so that a high-dimensional space can be
visualized in a 2D or 3D space. Additional layers of
information can be added by using coloring, shapes and size
of the objects on the graphs. PCA can be utilized to find
grouping, outliers and other artifacts within the data. To find
common underlying structures and correlation between two
matrices, PLS can be used. PLS has been shown to work well
on large and complex data sets with more variables than
observations, on collinear variables and where there are
some missing data.

A final, key contribution from the field of bioinformatics
is the approach developed to provide validation of prediction
findings from high-dimensional experiments. As was noted
in Ref. [91], many genomics-based studies that have been
published contain significant analytical errors. These errors
compromise the estimates of predictor accuracy or overall
findings. Following the best practices in developing and then
independently validating the observations in a distinct cohort
is essential for reproducible results [92]. For instance, in our
radiomics study, we have provided for several validation
components, including validation between MAASTRO
Clinic (Netherlands) and Moffitt sample sets, as well as
validation in prospectively collected Moffitt samples. When
model building and cross-validation efforts are completed,
the entire group will determine the appropriate model(s) to
evaluate in independent validation.

6.1.3. Sample size issues
High-throughput technologies (CT images, genomic/

proteomic, etc.) provide us with an enormous amount of
multivariate data describing the complex biological process.
Ability to predict risks or to draw inferences based on clinical
outcomes is bogged by sample size. Efron et al. have
pioneered the work, studied various cross-validation
methods and proposed unbiased error estimation called the
bootstrap [93,94]. Inference in small samples has seen
renewed interest with the advent of genomics technologies,
especially in classification [95]. There has been extensive
studies to make unbiased inference in small samples, one
approach was to create synthetic samples following the
distribution of the sample groups and report errors of the
newly formed population [96]. In addition, most popular
error estimates has been studied in context of small sample
classification [97].

6.2. Clinical and risk factor data

Incorporating detailed clinical and patient risk factor data
into radiomics is important because imaging features may
be influenced by patient parameters. Patient parameters may
influence the image features via a direct causal association
or exert a confounding effect on statistical associations
whereby the parameter is correlated with both the
independent and dependent variables. For instance, smok-
ing-related lung cancers differ from lung cancers in patients
who never smoked, and thus, smoking status could
influence image features, clinical parameters (histology),
phenotypes, molecular signatures and end points (i.e.,
survival, recurrence). Addressing the influence of patient
parameters in radiomics research by using epidemiologic
and biostatistical approaches will minimize spurious re-
lationships by avoiding type I error. Moreover, predictive



Fig. 8. Unsupervised hierarchical clustering of lung tumor image features extracted from CT images from 276 NSCLC patients. Tumor segmentation for each CT
image was performed in a semiautomated fashion. Quantitative imaging features were calculated using Definiens (Munchen, Germany) and represent many 2D
and 3D characteristics of the tumor. Aspects such as tumor volume, shape and texture were represented. Each of the numerical imaging features was median
centered, and all features were clustered using complete linkage, with correlation used as the similarity measure. The resulting heat map is visualized using red to
represent higher than median feature values and green to represent lower than median feature values. Each row of the heat map represents a specific imaging
feature across patients, and each column represents all features for a patient's lung tumor from CT.
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models which are more precise and clinically relevant may
be developed which target well-characterized and -defined
patient subgroups rather than a broad heterogeneous disease
group. For example, a model that includes all patients with
adenocarcinoma of lung would not likely be clinically
relevant because of the heterogeneity (biological and
clinical) of this histologic subtype. However, a predictive
model which focused on adenocarcinoma patients with a
specific molecular feature (e.g., EML4-ALK fusion) would
likely be informative because of the biological and clinical
homogeneity and subsequent targeted therapies. Thus, as
noted with the bioinformatics “toolbox,” existing epidemi-
ologic and biostatistical approaches can be leveraged
towards radiomics research to develop robust and clinically
relevant prognostic models, to reveal factors that may
influence (casually or by confounding) radiomics features,
and to explore and mine complex data sets.
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